File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Lateral overturning process and failure mechanism of curved steel-concrete composite box-girder bridges under specific overloading vehicles

TitleLateral overturning process and failure mechanism of curved steel-concrete composite box-girder bridges under specific overloading vehicles
Authors
Issue Date2022
PublisherInstitution of Structural Engineers. The Journal's web site is located at http://www.journals.elsevier.com/structures
Citation
Structures, 2022, v. 35, p. 638-649 How to Cite?
AbstractCurved steel–concrete composite girders are regularly adopted for use in ramp bridges in urban overpasses. As such, it is important that the lateral overturning stability of girders supported by single-column piers is analyzed. In order to comprehensively evaluate the lateral overturning mechanism of girders, this paper carries out a full-range nonlinear analysis of the lateral overturning process of a three-span curved steel–concrete composite box girder based on the explicit dynamic finite element (FE) method. According to the FE analysis results and actual forces acting on the structure, a new method for analyzing overturning stability considering the corresponding limit state is proposed. The results show that the overturning process can be divided into three stages: (i) small girder rotation; (ii) large girder rotation; and (iii) lateral displacement and overturning. The mechanical behaviors, overturning processes and failure characteristics of curved steel–concrete composite girders are similar to those of typical concrete box girders. However, some distinct characteristics, including the crawling behavior of girders and buckling of bottom plates, only exist in composite girders. The proposed overturning stability checking method is found to be more appropriate for determining the bearing capacity of girders on the ultimate limit state than the current design method described in the specifications (JTG 3362-2018). Some measures – such as setting lateral movement limiting devices, setting pre-eccentricity of supports and increasing the distance between supports which can considerably improve the lateral overturning stability of steel–concrete composite girders – are highlighted.
Persistent Identifierhttp://hdl.handle.net/10722/313432
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorJi, XL-
dc.contributor.authorZhu, L-
dc.contributor.authorSu, KL-
dc.contributor.authorWang, GM-
dc.date.accessioned2022-06-17T06:46:19Z-
dc.date.available2022-06-17T06:46:19Z-
dc.date.issued2022-
dc.identifier.citationStructures, 2022, v. 35, p. 638-649-
dc.identifier.urihttp://hdl.handle.net/10722/313432-
dc.description.abstractCurved steel–concrete composite girders are regularly adopted for use in ramp bridges in urban overpasses. As such, it is important that the lateral overturning stability of girders supported by single-column piers is analyzed. In order to comprehensively evaluate the lateral overturning mechanism of girders, this paper carries out a full-range nonlinear analysis of the lateral overturning process of a three-span curved steel–concrete composite box girder based on the explicit dynamic finite element (FE) method. According to the FE analysis results and actual forces acting on the structure, a new method for analyzing overturning stability considering the corresponding limit state is proposed. The results show that the overturning process can be divided into three stages: (i) small girder rotation; (ii) large girder rotation; and (iii) lateral displacement and overturning. The mechanical behaviors, overturning processes and failure characteristics of curved steel–concrete composite girders are similar to those of typical concrete box girders. However, some distinct characteristics, including the crawling behavior of girders and buckling of bottom plates, only exist in composite girders. The proposed overturning stability checking method is found to be more appropriate for determining the bearing capacity of girders on the ultimate limit state than the current design method described in the specifications (JTG 3362-2018). Some measures – such as setting lateral movement limiting devices, setting pre-eccentricity of supports and increasing the distance between supports which can considerably improve the lateral overturning stability of steel–concrete composite girders – are highlighted.-
dc.languageeng-
dc.publisherInstitution of Structural Engineers. The Journal's web site is located at http://www.journals.elsevier.com/structures-
dc.relation.ispartofStructures-
dc.titleLateral overturning process and failure mechanism of curved steel-concrete composite box-girder bridges under specific overloading vehicles-
dc.typeArticle-
dc.identifier.emailSu, KL: klsu@hkucc.hku.hk-
dc.identifier.authoritySu, KL=rp00072-
dc.identifier.doi10.1016/j.istruc.2021.11.039-
dc.identifier.hkuros333457-
dc.identifier.volume35-
dc.identifier.spage638-
dc.identifier.epage649-
dc.identifier.isiWOS:000729695700002-
dc.publisher.placeUnited Kingdom-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats