File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Peripheral genetic structure of Helicoverpa zea indicates asymmetrical panmixia

TitlePeripheral genetic structure of Helicoverpa zea indicates asymmetrical panmixia
Authors
KeywordsDAPC
Helicoverpa
Heliothine
Moth
Population genetics
Stable isotopes
Issue Date2016
Citation
Ecology and Evolution, 2016, v. 6, n. 10, p. 3198-3207 How to Cite?
AbstractSeasonal climatic shifts create peripheral habitats that alternate between habitable and uninhabitable for migratory species. Such dynamic peripheral habitats are potential sites where migratory species could evolve high genetic diversity resulting from convergence of immigrants from multiple regionally distant areas. Migrant populations of Helicoverpa zea (Boddie) captured during two different seasons were assessed for genetic structure using microsatellite markers and for host plant type using stable carbon isotope analysis. Individuals (N = 568) were genotyped and divided into 13 putative populations based on collection site and time. Fixation indices (F-statistics), analysis of molecular variance (AMOVA), and discriminant analysis of principal components (DAPC) were used to examine within and among population genetic variation. Mean number of alleles per locus was 10.25 (± 3.2 SD), and allelic richness ranged from 2.38 to 5.13 (± 3.2 SD). The observed and expected heterozygosity ranged from 0.07 to 0.48 and 0.08 to 0.62, respectively. Low FST (0.01 to 0.02) and high FIS (0.08 to 0.33) values suggest captured migrants originated from breeding populations with different allele frequencies. We postulate that high genetic diversity within migrant populations and low genetic differentiation among migrant populations of H. zea are the result of asymmetrical immigration due to the high dispersal and reproductive behavior of H. zea, which may hinder the adaptation and establishment of H. zea to peripheral habitat. These findings highlight the importance of assessing peripheral population structure in relation to ecological and evolutionary dynamics of this and other highly reproductive and dispersive species.
Persistent Identifierhttp://hdl.handle.net/10722/312011
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorSeymour, Mathew-
dc.contributor.authorPerera, Omaththage P.-
dc.contributor.authorFescemyer, Howard W.-
dc.contributor.authorJackson, Ryan E.-
dc.contributor.authorFleischer, Shelby J.-
dc.contributor.authorAbel, Craig A.-
dc.date.accessioned2022-04-06T04:31:58Z-
dc.date.available2022-04-06T04:31:58Z-
dc.date.issued2016-
dc.identifier.citationEcology and Evolution, 2016, v. 6, n. 10, p. 3198-3207-
dc.identifier.urihttp://hdl.handle.net/10722/312011-
dc.description.abstractSeasonal climatic shifts create peripheral habitats that alternate between habitable and uninhabitable for migratory species. Such dynamic peripheral habitats are potential sites where migratory species could evolve high genetic diversity resulting from convergence of immigrants from multiple regionally distant areas. Migrant populations of Helicoverpa zea (Boddie) captured during two different seasons were assessed for genetic structure using microsatellite markers and for host plant type using stable carbon isotope analysis. Individuals (N = 568) were genotyped and divided into 13 putative populations based on collection site and time. Fixation indices (F-statistics), analysis of molecular variance (AMOVA), and discriminant analysis of principal components (DAPC) were used to examine within and among population genetic variation. Mean number of alleles per locus was 10.25 (± 3.2 SD), and allelic richness ranged from 2.38 to 5.13 (± 3.2 SD). The observed and expected heterozygosity ranged from 0.07 to 0.48 and 0.08 to 0.62, respectively. Low FST (0.01 to 0.02) and high FIS (0.08 to 0.33) values suggest captured migrants originated from breeding populations with different allele frequencies. We postulate that high genetic diversity within migrant populations and low genetic differentiation among migrant populations of H. zea are the result of asymmetrical immigration due to the high dispersal and reproductive behavior of H. zea, which may hinder the adaptation and establishment of H. zea to peripheral habitat. These findings highlight the importance of assessing peripheral population structure in relation to ecological and evolutionary dynamics of this and other highly reproductive and dispersive species.-
dc.languageeng-
dc.relation.ispartofEcology and Evolution-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectDAPC-
dc.subjectHelicoverpa-
dc.subjectHeliothine-
dc.subjectMoth-
dc.subjectPopulation genetics-
dc.subjectStable isotopes-
dc.titlePeripheral genetic structure of Helicoverpa zea indicates asymmetrical panmixia-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1002/ece3.2106-
dc.identifier.scopuseid_2-s2.0-84963811556-
dc.identifier.volume6-
dc.identifier.issue10-
dc.identifier.spage3198-
dc.identifier.epage3207-
dc.identifier.eissn2045-7758-
dc.identifier.isiWOS:000376646700013-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats