File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Intensification of the dispersion of the global climatic landscape and its potential as a new climate change indicator

TitleIntensification of the dispersion of the global climatic landscape and its potential as a new climate change indicator
Authors
Keywordsdispersion
global climate diversity
global climate landscape
Köppen-Geiger climate classification
patch aggregation
Issue Date2020
Citation
Environmental Research Letters, 2020, v. 15, n. 11, article no. 114032 How to Cite?
AbstractIncreases and decreases in the areas of climatic types have become one of the most important responses to climate warming. However, few attempts have been made to quantify the complementary relationship between different climate types or to further assess changes in the spatial morphology. In this study, we used different observed datasets to reveal a dispersion phenomenon between major global climate types in 1950-2010, which is significantly consistent with the increasing trend of global temperatures. As the standard deviation of the area of major climate zones strengthened in 1950-2010, the global climatic landscape underwent notable changes. Not only did the area change, but the shape of the overall boundary became regular, the aggregation of climatic patches strengthened, and the climatic diversity declined substantially. However, changes in the global climatic landscapes are not at equilibrium with those on the continental scale. Interpreting these climatic morphological indices can deepen our understanding of the redistribution response mechanisms of species to climate change and help predict how they will be impacted by long-term future climate change.
Persistent Identifierhttp://hdl.handle.net/10722/309269
ISSN
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorGuan, Yanlong-
dc.contributor.authorLu, Hongwei-
dc.contributor.authorHe, Li-
dc.contributor.authorAdhikari, Hari-
dc.contributor.authorPellikka, Petri-
dc.contributor.authorMaeda, Eduardo-
dc.contributor.authorHeiskanen, Janne-
dc.date.accessioned2021-12-15T03:59:52Z-
dc.date.available2021-12-15T03:59:52Z-
dc.date.issued2020-
dc.identifier.citationEnvironmental Research Letters, 2020, v. 15, n. 11, article no. 114032-
dc.identifier.issn1748-9318-
dc.identifier.urihttp://hdl.handle.net/10722/309269-
dc.description.abstractIncreases and decreases in the areas of climatic types have become one of the most important responses to climate warming. However, few attempts have been made to quantify the complementary relationship between different climate types or to further assess changes in the spatial morphology. In this study, we used different observed datasets to reveal a dispersion phenomenon between major global climate types in 1950-2010, which is significantly consistent with the increasing trend of global temperatures. As the standard deviation of the area of major climate zones strengthened in 1950-2010, the global climatic landscape underwent notable changes. Not only did the area change, but the shape of the overall boundary became regular, the aggregation of climatic patches strengthened, and the climatic diversity declined substantially. However, changes in the global climatic landscapes are not at equilibrium with those on the continental scale. Interpreting these climatic morphological indices can deepen our understanding of the redistribution response mechanisms of species to climate change and help predict how they will be impacted by long-term future climate change.-
dc.languageeng-
dc.relation.ispartofEnvironmental Research Letters-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectdispersion-
dc.subjectglobal climate diversity-
dc.subjectglobal climate landscape-
dc.subjectKöppen-Geiger climate classification-
dc.subjectpatch aggregation-
dc.titleIntensification of the dispersion of the global climatic landscape and its potential as a new climate change indicator-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1088/1748-9326/aba2a7-
dc.identifier.scopuseid_2-s2.0-85089223272-
dc.identifier.volume15-
dc.identifier.issue11-
dc.identifier.spagearticle no. 114032-
dc.identifier.epagearticle no. 114032-
dc.identifier.eissn1748-9326-
dc.identifier.isiWOS:000591062400001-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats