File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1007/s40820-021-00611-9
- Scopus: eid_2-s2.0-85102659586
- PMID: 34138349
- WOS: WOS:000629787500003
- Find via

Supplementary
- Citations:
- Appears in Collections:
Article: Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion
| Title | Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion |
|---|---|
| Authors | |
| Keywords | Insertion responsive Implantable microneedles Skin indentation Transdermal microneedles Pain management |
| Issue Date | 2021 |
| Publisher | SpringerOpen. The Journal's web site is located at https://www.springer.com/journal/40820 |
| Citation | Nano-Micro Letters, 2021, v. 13 n. 1, article no. 93 How to Cite? |
| Abstract | Transdermal microneedle (MN) patches are a promising tool used to transport a wide variety of active compounds into the skin. To serve as a substitute for common hypodermic needles, MNs must pierce the human stratum corneum (~ 10 to 20 µm), without rupturing or bending during penetration. This ensures that the cargo is released at the predetermined place and time. Therefore, the ability of MN patches to sufficiently pierce the skin is a crucial requirement. In the current review, the pain signal and its management during application of MNs and typical hypodermic needles are presented and compared. This is followed by a discussion on mechanical analysis and skin models used for insertion tests before application to clinical practice. Factors that affect insertion (e.g., geometry, material composition and cross-linking of MNs), along with recent advancements in developed strategies (e.g., insertion responsive patches and 3D printed biomimetic MNs using two-photon lithography) to improve the skin penetration are highlighted to provide a backdrop for future research. |
| Persistent Identifier | http://hdl.handle.net/10722/306331 |
| ISSN | 2023 Impact Factor: 31.6 2023 SCImago Journal Rankings: 6.484 |
| PubMed Central ID | |
| ISI Accession Number ID |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Makvandi, P | - |
| dc.contributor.author | Kirkby, M | - |
| dc.contributor.author | Hutton, ARJ | - |
| dc.contributor.author | Shabani, M | - |
| dc.contributor.author | Yiu, CKY | - |
| dc.contributor.author | Baghbantaraghdari, Z | - |
| dc.contributor.author | Jamaledin, R | - |
| dc.contributor.author | Carlotti, M | - |
| dc.contributor.author | Mazzolai, B | - |
| dc.contributor.author | Mattoli, V | - |
| dc.contributor.author | Donnelly, RF | - |
| dc.date.accessioned | 2021-10-20T10:22:06Z | - |
| dc.date.available | 2021-10-20T10:22:06Z | - |
| dc.date.issued | 2021 | - |
| dc.identifier.citation | Nano-Micro Letters, 2021, v. 13 n. 1, article no. 93 | - |
| dc.identifier.issn | 2311-6706 | - |
| dc.identifier.uri | http://hdl.handle.net/10722/306331 | - |
| dc.description.abstract | Transdermal microneedle (MN) patches are a promising tool used to transport a wide variety of active compounds into the skin. To serve as a substitute for common hypodermic needles, MNs must pierce the human stratum corneum (~ 10 to 20 µm), without rupturing or bending during penetration. This ensures that the cargo is released at the predetermined place and time. Therefore, the ability of MN patches to sufficiently pierce the skin is a crucial requirement. In the current review, the pain signal and its management during application of MNs and typical hypodermic needles are presented and compared. This is followed by a discussion on mechanical analysis and skin models used for insertion tests before application to clinical practice. Factors that affect insertion (e.g., geometry, material composition and cross-linking of MNs), along with recent advancements in developed strategies (e.g., insertion responsive patches and 3D printed biomimetic MNs using two-photon lithography) to improve the skin penetration are highlighted to provide a backdrop for future research. | - |
| dc.language | eng | - |
| dc.publisher | SpringerOpen. The Journal's web site is located at https://www.springer.com/journal/40820 | - |
| dc.relation.ispartof | Nano-Micro Letters | - |
| dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
| dc.subject | Insertion responsive | - |
| dc.subject | Implantable microneedles | - |
| dc.subject | Skin indentation | - |
| dc.subject | Transdermal microneedles | - |
| dc.subject | Pain management | - |
| dc.title | Engineering Microneedle Patches for Improved Penetration: Analysis, Skin Models and Factors Affecting Needle Insertion | - |
| dc.type | Article | - |
| dc.identifier.email | Yiu, CKY: ckyyiu@hkucc.hku.hk | - |
| dc.identifier.authority | Yiu, CKY=rp00018 | - |
| dc.description.nature | published_or_final_version | - |
| dc.identifier.doi | 10.1007/s40820-021-00611-9 | - |
| dc.identifier.pmid | 34138349 | - |
| dc.identifier.pmcid | PMC8006208 | - |
| dc.identifier.scopus | eid_2-s2.0-85102659586 | - |
| dc.identifier.hkuros | 328330 | - |
| dc.identifier.volume | 13 | - |
| dc.identifier.issue | 1 | - |
| dc.identifier.spage | article no. 93 | - |
| dc.identifier.epage | article no. 93 | - |
| dc.identifier.isi | WOS:000629787500003 | - |
| dc.publisher.place | Germany | - |
