File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1177/2399808320977866
- Scopus: eid_2-s2.0-85097291665
- WOS: WOS:000627543900001
Supplementary
- Citations:
- Appears in Collections:
Article: Predicting vibrancy of metro station areas considering spatial relationships through graph convolutional neural networks: The case of Shenzhen, China
Title | Predicting vibrancy of metro station areas considering spatial relationships through graph convolutional neural networks: The case of Shenzhen, China |
---|---|
Authors | |
Issue Date | 2020 |
Citation | Environment and Planning B: Urban Analytics and City Science, 2020, p. 239980832097786 How to Cite? |
Persistent Identifier | http://hdl.handle.net/10722/305143 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xiao, L | - |
dc.contributor.author | Lo, S | - |
dc.contributor.author | Zhou, J | - |
dc.contributor.author | LIU, J | - |
dc.contributor.author | Yang, L | - |
dc.date.accessioned | 2021-10-05T02:40:20Z | - |
dc.date.available | 2021-10-05T02:40:20Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Environment and Planning B: Urban Analytics and City Science, 2020, p. 239980832097786 | - |
dc.identifier.uri | http://hdl.handle.net/10722/305143 | - |
dc.language | eng | - |
dc.relation.ispartof | Environment and Planning B: Urban Analytics and City Science | - |
dc.title | Predicting vibrancy of metro station areas considering spatial relationships through graph convolutional neural networks: The case of Shenzhen, China | - |
dc.type | Article | - |
dc.identifier.email | Zhou, J: zhoujp@hku.hk | - |
dc.identifier.authority | Zhou, J=rp02236 | - |
dc.identifier.doi | 10.1177/2399808320977866 | - |
dc.identifier.scopus | eid_2-s2.0-85097291665 | - |
dc.identifier.hkuros | 326038 | - |
dc.identifier.spage | 239980832097786 | - |
dc.identifier.epage | 239980832097786 | - |
dc.identifier.isi | WOS:000627543900001 | - |