File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Predicting vibrancy of metro station areas considering spatial relationships through graph convolutional neural networks: The case of Shenzhen, China

TitlePredicting vibrancy of metro station areas considering spatial relationships through graph convolutional neural networks: The case of Shenzhen, China
Authors
Issue Date2020
Citation
Environment and Planning B: Urban Analytics and City Science, 2020, p. 239980832097786 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/305143
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorXiao, L-
dc.contributor.authorLo, S-
dc.contributor.authorZhou, J-
dc.contributor.authorLIU, J-
dc.contributor.authorYang, L-
dc.date.accessioned2021-10-05T02:40:20Z-
dc.date.available2021-10-05T02:40:20Z-
dc.date.issued2020-
dc.identifier.citationEnvironment and Planning B: Urban Analytics and City Science, 2020, p. 239980832097786-
dc.identifier.urihttp://hdl.handle.net/10722/305143-
dc.languageeng-
dc.relation.ispartofEnvironment and Planning B: Urban Analytics and City Science-
dc.titlePredicting vibrancy of metro station areas considering spatial relationships through graph convolutional neural networks: The case of Shenzhen, China-
dc.typeArticle-
dc.identifier.emailZhou, J: zhoujp@hku.hk-
dc.identifier.authorityZhou, J=rp02236-
dc.identifier.doi10.1177/2399808320977866-
dc.identifier.scopuseid_2-s2.0-85097291665-
dc.identifier.hkuros326038-
dc.identifier.spage239980832097786-
dc.identifier.epage239980832097786-
dc.identifier.isiWOS:000627543900001-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats