File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jeconom.2020.10.007
- Scopus: eid_2-s2.0-85097449868
- WOS: WOS:000689638900004
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model
Title | Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model |
---|---|
Authors | |
Keywords | Adaptive inference Lagrange multiplier test Portmanteau test QMLE Semiparametric BEKK model Semiparametric GARCH model |
Issue Date | 2021 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/jeconom |
Citation | Journal of Econometrics, 2021, v. 224 n. 2, p. 306-329 How to Cite? |
Abstract | This paper considers a semiparametric generalized autoregressive conditional heteroskedasticity (S-GARCH) model. For this model, we first estimate the time-varying long run component for unconditional variance by the kernel estimator, and then estimate the non-time-varying parameters in GARCH-type short run component by the quasi maximum likelihood estimator (QMLE). We show that the QMLE is asymptotically normal with the parametric convergence rate. Next, we construct a Lagrange multiplier test for linear parameter constraint and a portmanteau test for model checking, and obtain their asymptotic null distributions. Our entire statistical inference procedure works for the non-stationary data with two important features: first, our QMLE and two tests are adaptive to the unknown form of the long run component; second, our QMLE and two tests share the same efficiency and testing power as those in variance targeting method when the S-GARCH model is stationary. |
Persistent Identifier | http://hdl.handle.net/10722/305035 |
ISSN | 2023 Impact Factor: 9.9 2023 SCImago Journal Rankings: 9.161 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jiang, F | - |
dc.contributor.author | Li, D | - |
dc.contributor.author | Zhu, K | - |
dc.date.accessioned | 2021-10-05T02:38:49Z | - |
dc.date.available | 2021-10-05T02:38:49Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Journal of Econometrics, 2021, v. 224 n. 2, p. 306-329 | - |
dc.identifier.issn | 0304-4076 | - |
dc.identifier.uri | http://hdl.handle.net/10722/305035 | - |
dc.description.abstract | This paper considers a semiparametric generalized autoregressive conditional heteroskedasticity (S-GARCH) model. For this model, we first estimate the time-varying long run component for unconditional variance by the kernel estimator, and then estimate the non-time-varying parameters in GARCH-type short run component by the quasi maximum likelihood estimator (QMLE). We show that the QMLE is asymptotically normal with the parametric convergence rate. Next, we construct a Lagrange multiplier test for linear parameter constraint and a portmanteau test for model checking, and obtain their asymptotic null distributions. Our entire statistical inference procedure works for the non-stationary data with two important features: first, our QMLE and two tests are adaptive to the unknown form of the long run component; second, our QMLE and two tests share the same efficiency and testing power as those in variance targeting method when the S-GARCH model is stationary. | - |
dc.language | eng | - |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/jeconom | - |
dc.relation.ispartof | Journal of Econometrics | - |
dc.subject | Adaptive inference | - |
dc.subject | Lagrange multiplier test | - |
dc.subject | Portmanteau test | - |
dc.subject | QMLE | - |
dc.subject | Semiparametric BEKK model | - |
dc.subject | Semiparametric GARCH model | - |
dc.title | Adaptive inference for a semiparametric generalized autoregressive conditional heteroskedasticity model | - |
dc.type | Article | - |
dc.identifier.email | Zhu, K: mazhuke@hku.hk | - |
dc.identifier.authority | Zhu, K=rp02199 | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1016/j.jeconom.2020.10.007 | - |
dc.identifier.scopus | eid_2-s2.0-85097449868 | - |
dc.identifier.hkuros | 326289 | - |
dc.identifier.volume | 224 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 306 | - |
dc.identifier.epage | 329 | - |
dc.identifier.isi | WOS:000689638900004 | - |
dc.publisher.place | Netherlands | - |