File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A shrinkage principle for heavy-tailed data: High-dimensional robust low-rank matrix recovery

TitleA shrinkage principle for heavy-tailed data: High-dimensional robust low-rank matrix recovery
Authors
KeywordsTrace regression
Heavy-tailed data
Shrinkage
Robust statistics
Low-rank matrix recovery
High-dimensional statistics
Issue Date2021
Citation
Annals of Statistics, 2021, v. 49, n. 3, p. 1239-1266 How to Cite?
AbstractThis paper introduces a simple principle for robust statistical inference via appropriate shrinkage on the data. This widens the scope of high-dimensional techniques, reducing the distributional conditions from subexponential or sub-Gaussian to more relaxed bounded second or fourth moment. As an illustration of this principle, we focus on robust estimation of the low-rank matrix Θ∗ from the trace regression model Y = Tr(Θ∗X) + ε. It encompasses four popular problems: sparse linear model, compressed sensing, matrix completion and multitask learning. We propose to apply the penalized least-squares approach to the appropriately truncated or shrunk data. Under only bounded 2 + δ moment condition on the response, the proposed robust methodology yields an estimator that possesses the same statistical error rates as previous literature with sub-Gaussian errors. For sparse linear model and multitask regression, we further allow the design to have only bounded fourth moment and obtain the same statistical rates. As a byproduct, we give a robust covariance estimator with concentration inequality and optimal rate of convergence in terms of the spectral norm, when the samples only bear bounded fourth moment. This result is of its own interest and importance. We reveal that under high dimensions, the sample covariance matrix is not optimal whereas our proposed robust covariance can achieve optimality. Extensive simulations are carried out to support the theories.
Persistent Identifierhttp://hdl.handle.net/10722/303766
ISSN
2021 Impact Factor: 4.904
2020 SCImago Journal Rankings: 5.877
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorFan, Jianqing-
dc.contributor.authorWang, Weichen-
dc.contributor.authorZhu, Ziwei-
dc.date.accessioned2021-09-15T08:25:58Z-
dc.date.available2021-09-15T08:25:58Z-
dc.date.issued2021-
dc.identifier.citationAnnals of Statistics, 2021, v. 49, n. 3, p. 1239-1266-
dc.identifier.issn0090-5364-
dc.identifier.urihttp://hdl.handle.net/10722/303766-
dc.description.abstractThis paper introduces a simple principle for robust statistical inference via appropriate shrinkage on the data. This widens the scope of high-dimensional techniques, reducing the distributional conditions from subexponential or sub-Gaussian to more relaxed bounded second or fourth moment. As an illustration of this principle, we focus on robust estimation of the low-rank matrix Θ∗ from the trace regression model Y = Tr(Θ∗X) + ε. It encompasses four popular problems: sparse linear model, compressed sensing, matrix completion and multitask learning. We propose to apply the penalized least-squares approach to the appropriately truncated or shrunk data. Under only bounded 2 + δ moment condition on the response, the proposed robust methodology yields an estimator that possesses the same statistical error rates as previous literature with sub-Gaussian errors. For sparse linear model and multitask regression, we further allow the design to have only bounded fourth moment and obtain the same statistical rates. As a byproduct, we give a robust covariance estimator with concentration inequality and optimal rate of convergence in terms of the spectral norm, when the samples only bear bounded fourth moment. This result is of its own interest and importance. We reveal that under high dimensions, the sample covariance matrix is not optimal whereas our proposed robust covariance can achieve optimality. Extensive simulations are carried out to support the theories.-
dc.languageeng-
dc.relation.ispartofAnnals of Statistics-
dc.subjectTrace regression-
dc.subjectHeavy-tailed data-
dc.subjectShrinkage-
dc.subjectRobust statistics-
dc.subjectLow-rank matrix recovery-
dc.subjectHigh-dimensional statistics-
dc.titleA shrinkage principle for heavy-tailed data: High-dimensional robust low-rank matrix recovery-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1214/20-AOS1980-
dc.identifier.scopuseid_2-s2.0-85102548958-
dc.identifier.hkuros327589-
dc.identifier.volume49-
dc.identifier.issue3-
dc.identifier.spage1239-
dc.identifier.epage1266-
dc.identifier.eissn2168-8966-
dc.identifier.isiWOS:000684378300001-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats