File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.ultramic.2017.01.019
- Scopus: eid_2-s2.0-85012024689
- PMID: 28196629
- WOS: WOS:000403992200014
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem
Title | The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem |
---|---|
Authors | |
Keywords | Quantitative STEM Gallium nitride Aberration-corrected electron microscopy Atomic structure Quantum wells |
Issue Date | 2017 |
Citation | Ultramicroscopy, 2017, v. 176, p. 93-98 How to Cite? |
Abstract | We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20 meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60 meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs. |
Persistent Identifier | http://hdl.handle.net/10722/302197 |
ISSN | 2023 Impact Factor: 2.1 2023 SCImago Journal Rankings: 0.780 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Humphreys, C. J. | - |
dc.contributor.author | Griffiths, J. T. | - |
dc.contributor.author | Tang, F. | - |
dc.contributor.author | Oehler, F. | - |
dc.contributor.author | Findlay, S. D. | - |
dc.contributor.author | Zheng, C. | - |
dc.contributor.author | Etheridge, J. | - |
dc.contributor.author | Martin, T. L. | - |
dc.contributor.author | Bagot, P. A.J. | - |
dc.contributor.author | Moody, M. P. | - |
dc.contributor.author | Sutherland, D. | - |
dc.contributor.author | Dawson, P. | - |
dc.contributor.author | Schulz, S. | - |
dc.contributor.author | Zhang, S. | - |
dc.contributor.author | Fu, W. Y. | - |
dc.contributor.author | Zhu, T. | - |
dc.contributor.author | Kappers, M. J. | - |
dc.contributor.author | Oliver, R. A. | - |
dc.date.accessioned | 2021-08-30T13:57:59Z | - |
dc.date.available | 2021-08-30T13:57:59Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Ultramicroscopy, 2017, v. 176, p. 93-98 | - |
dc.identifier.issn | 0304-3991 | - |
dc.identifier.uri | http://hdl.handle.net/10722/302197 | - |
dc.description.abstract | We have used high resolution transmission electron microscopy (HRTEM), aberration-corrected quantitative scanning transmission electron microscopy (Q-STEM), atom probe tomography (APT) and X-ray diffraction (XRD) to study the atomic structure of (0001) polar and (11-20) non-polar InGaN quantum wells (QWs). This paper provides an overview of the results. Polar (0001) InGaN in QWs is a random alloy, with In replacing Ga randomly. The InGaN QWs have atomic height interface steps, resulting in QW width fluctuations. The electrons are localised at the top QW interface by the built-in electric field and the well-width fluctuations, with a localisation energy of typically 20 meV. The holes are localised near the bottom QW interface, by indium fluctuations in the random alloy, with a localisation energy of typically 60 meV. On the other hand, the non-polar (11-20) InGaN QWs contain nanometre-scale indium-rich clusters which we suggest localise the carriers and produce longer wavelength (lower energy) emission than from random alloy non-polar InGaN QWs of the same average composition. The reason for the indium-rich clusters in non-polar (11-20) InGaN QWs is not yet clear, but may be connected to the lower QW growth temperature for the (11-20) InGaN QWs compared to the (0001) polar InGaN QWs. | - |
dc.language | eng | - |
dc.relation.ispartof | Ultramicroscopy | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | Quantitative STEM | - |
dc.subject | Gallium nitride | - |
dc.subject | Aberration-corrected electron microscopy | - |
dc.subject | Atomic structure | - |
dc.subject | Quantum wells | - |
dc.title | The atomic structure of polar and non-polar InGaN quantum wells and the green gap problem | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1016/j.ultramic.2017.01.019 | - |
dc.identifier.pmid | 28196629 | - |
dc.identifier.scopus | eid_2-s2.0-85012024689 | - |
dc.identifier.volume | 176 | - |
dc.identifier.spage | 93 | - |
dc.identifier.epage | 98 | - |
dc.identifier.eissn | 1879-2723 | - |
dc.identifier.isi | WOS:000403992200014 | - |