File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Growth of non-polar (11-20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method

TitleGrowth of non-polar (11-20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method
Authors
Issue Date2014
Citation
APL Materials, 2014, v. 2, n. 12, article no. 126101 How to Cite?
AbstractNon-polar (11-20) InGaN quantum dots (QDs) were grown by metal organic vapour phase epitaxy. An InGaN epilayer was grown and subjected to a temperature ramp in a nitrogen and ammonia environment before the growth of the GaN capping layer. Uncapped structures with and without the temperature ramp were grown for reference and imaged by atomic force microscopy. Micro-photoluminescence studies reveal the presence of resolution limited peaks with a linewidth of less than ∼500 μeV at 4.2 K. This linewidth is significantly narrower than that of non-polar InGaN quantum dots grown by alternate methods and may be indicative of reduced spectral diffusion. Time resolved photoluminescence studies reveal a mono-exponential exciton decay with a lifetime of 533 ps at 2.70 eV. The excitonic lifetime is more than an order of magnitude shorter than that for previously studied polar quantum dots and suggests the suppression of the internal electric field. Cathodoluminescence studies show the spatial distribution of the quantum dots and resolution limited spectral peaks at 18 K.
Persistent Identifierhttp://hdl.handle.net/10722/302172
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorGriffiths, J. T.-
dc.contributor.authorZhu, T.-
dc.contributor.authorOehler, F.-
dc.contributor.authorEmery, R. M.-
dc.contributor.authorFu, W. Y.-
dc.contributor.authorReid, B. P.L.-
dc.contributor.authorTaylor, R. A.-
dc.contributor.authorKappers, M. J.-
dc.contributor.authorHumphreys, C. J.-
dc.contributor.authorOliver, R. A.-
dc.date.accessioned2021-08-30T13:57:56Z-
dc.date.available2021-08-30T13:57:56Z-
dc.date.issued2014-
dc.identifier.citationAPL Materials, 2014, v. 2, n. 12, article no. 126101-
dc.identifier.urihttp://hdl.handle.net/10722/302172-
dc.description.abstractNon-polar (11-20) InGaN quantum dots (QDs) were grown by metal organic vapour phase epitaxy. An InGaN epilayer was grown and subjected to a temperature ramp in a nitrogen and ammonia environment before the growth of the GaN capping layer. Uncapped structures with and without the temperature ramp were grown for reference and imaged by atomic force microscopy. Micro-photoluminescence studies reveal the presence of resolution limited peaks with a linewidth of less than ∼500 μeV at 4.2 K. This linewidth is significantly narrower than that of non-polar InGaN quantum dots grown by alternate methods and may be indicative of reduced spectral diffusion. Time resolved photoluminescence studies reveal a mono-exponential exciton decay with a lifetime of 533 ps at 2.70 eV. The excitonic lifetime is more than an order of magnitude shorter than that for previously studied polar quantum dots and suggests the suppression of the internal electric field. Cathodoluminescence studies show the spatial distribution of the quantum dots and resolution limited spectral peaks at 18 K.-
dc.languageeng-
dc.relation.ispartofAPL Materials-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleGrowth of non-polar (11-20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1063/1.4904068-
dc.identifier.scopuseid_2-s2.0-84917694828-
dc.identifier.volume2-
dc.identifier.issue12-
dc.identifier.spagearticle no. 126101-
dc.identifier.epagearticle no. 126101-
dc.identifier.eissn2166-532X-
dc.identifier.isiWOS:000347170700022-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats