File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1063/1.4904068
- Scopus: eid_2-s2.0-84917694828
- WOS: WOS:000347170700022
Supplementary
- Citations:
- Appears in Collections:
Article: Growth of non-polar (11-20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method
Title | Growth of non-polar (11-20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method |
---|---|
Authors | |
Issue Date | 2014 |
Citation | APL Materials, 2014, v. 2, n. 12, article no. 126101 How to Cite? |
Abstract | Non-polar (11-20) InGaN quantum dots (QDs) were grown by metal organic vapour phase epitaxy. An InGaN epilayer was grown and subjected to a temperature ramp in a nitrogen and ammonia environment before the growth of the GaN capping layer. Uncapped structures with and without the temperature ramp were grown for reference and imaged by atomic force microscopy. Micro-photoluminescence studies reveal the presence of resolution limited peaks with a linewidth of less than ∼500 μeV at 4.2 K. This linewidth is significantly narrower than that of non-polar InGaN quantum dots grown by alternate methods and may be indicative of reduced spectral diffusion. Time resolved photoluminescence studies reveal a mono-exponential exciton decay with a lifetime of 533 ps at 2.70 eV. The excitonic lifetime is more than an order of magnitude shorter than that for previously studied polar quantum dots and suggests the suppression of the internal electric field. Cathodoluminescence studies show the spatial distribution of the quantum dots and resolution limited spectral peaks at 18 K. |
Persistent Identifier | http://hdl.handle.net/10722/302172 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Griffiths, J. T. | - |
dc.contributor.author | Zhu, T. | - |
dc.contributor.author | Oehler, F. | - |
dc.contributor.author | Emery, R. M. | - |
dc.contributor.author | Fu, W. Y. | - |
dc.contributor.author | Reid, B. P.L. | - |
dc.contributor.author | Taylor, R. A. | - |
dc.contributor.author | Kappers, M. J. | - |
dc.contributor.author | Humphreys, C. J. | - |
dc.contributor.author | Oliver, R. A. | - |
dc.date.accessioned | 2021-08-30T13:57:56Z | - |
dc.date.available | 2021-08-30T13:57:56Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | APL Materials, 2014, v. 2, n. 12, article no. 126101 | - |
dc.identifier.uri | http://hdl.handle.net/10722/302172 | - |
dc.description.abstract | Non-polar (11-20) InGaN quantum dots (QDs) were grown by metal organic vapour phase epitaxy. An InGaN epilayer was grown and subjected to a temperature ramp in a nitrogen and ammonia environment before the growth of the GaN capping layer. Uncapped structures with and without the temperature ramp were grown for reference and imaged by atomic force microscopy. Micro-photoluminescence studies reveal the presence of resolution limited peaks with a linewidth of less than ∼500 μeV at 4.2 K. This linewidth is significantly narrower than that of non-polar InGaN quantum dots grown by alternate methods and may be indicative of reduced spectral diffusion. Time resolved photoluminescence studies reveal a mono-exponential exciton decay with a lifetime of 533 ps at 2.70 eV. The excitonic lifetime is more than an order of magnitude shorter than that for previously studied polar quantum dots and suggests the suppression of the internal electric field. Cathodoluminescence studies show the spatial distribution of the quantum dots and resolution limited spectral peaks at 18 K. | - |
dc.language | eng | - |
dc.relation.ispartof | APL Materials | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.title | Growth of non-polar (11-20) InGaN quantum dots by metal organic vapour phase epitaxy using a two temperature method | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1063/1.4904068 | - |
dc.identifier.scopus | eid_2-s2.0-84917694828 | - |
dc.identifier.volume | 2 | - |
dc.identifier.issue | 12 | - |
dc.identifier.spage | article no. 126101 | - |
dc.identifier.epage | article no. 126101 | - |
dc.identifier.eissn | 2166-532X | - |
dc.identifier.isi | WOS:000347170700022 | - |