File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1039/C6SC02925F
- Scopus: eid_2-s2.0-85011072528
- PMID: 28451250
- WOS: WOS:000395428300030
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Engineering monolayer poration for rapid exfoliation of microbial membranes
Title | Engineering monolayer poration for rapid exfoliation of microbial membranes |
---|---|
Authors | Pyne, AlicePfeil, Marc PhilippBennett, IsabelRavi, JascindraIavicoli, PatriziaLamarre, BaptisteRoethke, AnitaRay, SantanuJiang, HaiboBella, AngeloReisinger, BerndYin, DanielLittle, BenjaminMuñoz-García, Juan C.Cerasoli, EleonoraJudge, Peter J.Faruqui, NilofarCalzolai, LuigiHenrion, AndreMartyna, Glenn J.Grovenor, Chris R.M.Crain, JasonHoogenboom, Bart W.Watts, AnthonyRyadnov, Maxim G. |
Issue Date | 2017 |
Citation | Chemical Science, 2017, v. 8, n. 2, p. 1105-1115 How to Cite? |
Abstract | The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics. |
Persistent Identifier | http://hdl.handle.net/10722/301810 |
ISSN | 2023 Impact Factor: 7.6 2023 SCImago Journal Rankings: 2.333 |
PubMed Central ID | |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pyne, Alice | - |
dc.contributor.author | Pfeil, Marc Philipp | - |
dc.contributor.author | Bennett, Isabel | - |
dc.contributor.author | Ravi, Jascindra | - |
dc.contributor.author | Iavicoli, Patrizia | - |
dc.contributor.author | Lamarre, Baptiste | - |
dc.contributor.author | Roethke, Anita | - |
dc.contributor.author | Ray, Santanu | - |
dc.contributor.author | Jiang, Haibo | - |
dc.contributor.author | Bella, Angelo | - |
dc.contributor.author | Reisinger, Bernd | - |
dc.contributor.author | Yin, Daniel | - |
dc.contributor.author | Little, Benjamin | - |
dc.contributor.author | Muñoz-García, Juan C. | - |
dc.contributor.author | Cerasoli, Eleonora | - |
dc.contributor.author | Judge, Peter J. | - |
dc.contributor.author | Faruqui, Nilofar | - |
dc.contributor.author | Calzolai, Luigi | - |
dc.contributor.author | Henrion, Andre | - |
dc.contributor.author | Martyna, Glenn J. | - |
dc.contributor.author | Grovenor, Chris R.M. | - |
dc.contributor.author | Crain, Jason | - |
dc.contributor.author | Hoogenboom, Bart W. | - |
dc.contributor.author | Watts, Anthony | - |
dc.contributor.author | Ryadnov, Maxim G. | - |
dc.date.accessioned | 2021-08-19T02:20:47Z | - |
dc.date.available | 2021-08-19T02:20:47Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | Chemical Science, 2017, v. 8, n. 2, p. 1105-1115 | - |
dc.identifier.issn | 2041-6520 | - |
dc.identifier.uri | http://hdl.handle.net/10722/301810 | - |
dc.description.abstract | The spread of bacterial resistance to traditional antibiotics continues to stimulate the search for alternative antimicrobial strategies. All forms of life, from bacteria to humans, are postulated to rely on a fundamental host defense mechanism, which exploits the formation of open pores in microbial phospholipid bilayers. Here we predict that transmembrane poration is not necessary for antimicrobial activity and reveal a distinct poration mechanism that targets the outer leaflet of phospholipid bilayers. Using a combination of molecular-scale and real-time imaging, spectroscopy and spectrometry approaches, we introduce a structural motif with a universal insertion mode in reconstituted membranes and live bacteria. We demonstrate that this motif rapidly assembles into monolayer pits that coalesce during progressive membrane exfoliation, leading to bacterial cell death within minutes. The findings offer a new physical basis for designing effective antibiotics. | - |
dc.language | eng | - |
dc.relation.ispartof | Chemical Science | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.title | Engineering monolayer poration for rapid exfoliation of microbial membranes | - |
dc.type | Article | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1039/C6SC02925F | - |
dc.identifier.pmid | 28451250 | - |
dc.identifier.pmcid | PMC5369539 | - |
dc.identifier.scopus | eid_2-s2.0-85011072528 | - |
dc.identifier.volume | 8 | - |
dc.identifier.issue | 2 | - |
dc.identifier.spage | 1105 | - |
dc.identifier.epage | 1115 | - |
dc.identifier.eissn | 2041-6539 | - |
dc.identifier.isi | WOS:000395428300030 | - |