File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.3390/w13121614
- Scopus: eid_2-s2.0-85108786469
- WOS: WOS:000666950100001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: CO2 and CH4 emissions from an arid fluvial network on the Chinese Loess Plateau
Title | CO2 and CH4 emissions from an arid fluvial network on the Chinese Loess Plateau |
---|---|
Authors | |
Keywords | carbon dioxide methane carbon cycle Chinese Loess Plateau arid fluvial network |
Issue Date | 2021 |
Publisher | MDPI AG. The Journal's web site is located at http://www.mdpi.com/journal/water |
Citation | Water, 2021, v. 13 n. 12, p. article no. 1614 How to Cite? |
Abstract | The emissions of greenhouse gases (GHGs) from inland waters are an important component of the global carbon (C) cycle. However, the current understanding of GHGs emissions from arid river systems remains largely unknown. To shed light on GHGs emissions from inland waters in arid regions, high-resolution carbon dioxide (CO2) and methane (CH4) emission measurements were carried out in the arid Kuye River Basin (KRB) on the Chinese Loess Plateau to examine their spatio-temporal variability. Our results show that all streams and rivers were net C sources, but some of the reservoirs in the KRB became carbon sinks at certain times. The CO2 flux (FCO2) recorded in the rivers (91.0 mmol m−2 d−1) was higher than that of the reservoirs (10.0 mmol m−2 d−1), while CH4 flux (FCH4) in rivers (0.35 mmol m−2 d−1) was lower than that of the reservoirs (0.78 mmol m−2 d−1). The best model developed from a number of environmental parameters was able to explain almost 40% of the variability in partial pressure of CO2 (pCO2) for rivers and reservoirs, respectively. For CH4 emissions, at least 70% of the flux occurred in the form of ebullition. The emissions of CH4 in summer were more than threefold higher than in spring and autumn, with water temperature being the key environmental variable affecting emission rates. Since the construction of reservoirs can alter the morphology of existing fluvial systems and consequently the characteristics of CO2 and CH4 emissions, we conclude that future sampling efforts conducted at the basin scale need to cover both rivers and reservoirs concurrently. |
Persistent Identifier | http://hdl.handle.net/10722/301733 |
ISSN | 2023 Impact Factor: 3.0 2023 SCImago Journal Rankings: 0.724 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | CHAN, CN | - |
dc.contributor.author | Shi, H | - |
dc.contributor.author | LIU, B | - |
dc.contributor.author | Ran, L | - |
dc.date.accessioned | 2021-08-09T03:43:26Z | - |
dc.date.available | 2021-08-09T03:43:26Z | - |
dc.date.issued | 2021 | - |
dc.identifier.citation | Water, 2021, v. 13 n. 12, p. article no. 1614 | - |
dc.identifier.issn | 2073-4441 | - |
dc.identifier.uri | http://hdl.handle.net/10722/301733 | - |
dc.description.abstract | The emissions of greenhouse gases (GHGs) from inland waters are an important component of the global carbon (C) cycle. However, the current understanding of GHGs emissions from arid river systems remains largely unknown. To shed light on GHGs emissions from inland waters in arid regions, high-resolution carbon dioxide (CO2) and methane (CH4) emission measurements were carried out in the arid Kuye River Basin (KRB) on the Chinese Loess Plateau to examine their spatio-temporal variability. Our results show that all streams and rivers were net C sources, but some of the reservoirs in the KRB became carbon sinks at certain times. The CO2 flux (FCO2) recorded in the rivers (91.0 mmol m−2 d−1) was higher than that of the reservoirs (10.0 mmol m−2 d−1), while CH4 flux (FCH4) in rivers (0.35 mmol m−2 d−1) was lower than that of the reservoirs (0.78 mmol m−2 d−1). The best model developed from a number of environmental parameters was able to explain almost 40% of the variability in partial pressure of CO2 (pCO2) for rivers and reservoirs, respectively. For CH4 emissions, at least 70% of the flux occurred in the form of ebullition. The emissions of CH4 in summer were more than threefold higher than in spring and autumn, with water temperature being the key environmental variable affecting emission rates. Since the construction of reservoirs can alter the morphology of existing fluvial systems and consequently the characteristics of CO2 and CH4 emissions, we conclude that future sampling efforts conducted at the basin scale need to cover both rivers and reservoirs concurrently. | - |
dc.language | eng | - |
dc.publisher | MDPI AG. The Journal's web site is located at http://www.mdpi.com/journal/water | - |
dc.relation.ispartof | Water | - |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject | carbon dioxide | - |
dc.subject | methane | - |
dc.subject | carbon cycle | - |
dc.subject | Chinese Loess Plateau | - |
dc.subject | arid fluvial network | - |
dc.title | CO2 and CH4 emissions from an arid fluvial network on the Chinese Loess Plateau | - |
dc.type | Article | - |
dc.identifier.email | Ran, L: lsran@hku.hk | - |
dc.identifier.authority | Ran, L=rp02173 | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.3390/w13121614 | - |
dc.identifier.scopus | eid_2-s2.0-85108786469 | - |
dc.identifier.hkuros | 323912 | - |
dc.identifier.volume | 13 | - |
dc.identifier.issue | 12 | - |
dc.identifier.spage | article no. 1614 | - |
dc.identifier.epage | article no. 1614 | - |
dc.identifier.isi | WOS:000666950100001 | - |
dc.publisher.place | Switzerland | - |