File Download

There are no files associated with this item.

Supplementary

Conference Paper: Deep learning based fully automated pathology classification of lumbar spine

TitleDeep learning based fully automated pathology classification of lumbar spine
Authors
Issue Date2021
PublisherInternational Society for the Study of the Lumbar Spine.
Citation
The International Society for the Study of the Lumbar Spine (ISSLS) Virtual Annual Meeting 2021: Reflecting the Past and Embracing the Future, 2-4 June 2021 How to Cite?
DescriptionGeneral Posters - Imaging, biomechanics, Artificial intelligence (AI) - no. GP149
Persistent Identifierhttp://hdl.handle.net/10722/300737

 

DC FieldValueLanguage
dc.contributor.authorKuang, X-
dc.contributor.authorCheung, JPY-
dc.contributor.authorZhang, T-
dc.date.accessioned2021-06-18T14:56:20Z-
dc.date.available2021-06-18T14:56:20Z-
dc.date.issued2021-
dc.identifier.citationThe International Society for the Study of the Lumbar Spine (ISSLS) Virtual Annual Meeting 2021: Reflecting the Past and Embracing the Future, 2-4 June 2021-
dc.identifier.urihttp://hdl.handle.net/10722/300737-
dc.descriptionGeneral Posters - Imaging, biomechanics, Artificial intelligence (AI) - no. GP149 -
dc.languageeng-
dc.publisherInternational Society for the Study of the Lumbar Spine. -
dc.relation.ispartofISSLS (International Society for the Study of the Lumbar Spine) Virtual Annual Meeting 2021-
dc.titleDeep learning based fully automated pathology classification of lumbar spine-
dc.typeConference_Paper-
dc.identifier.emailCheung, JPY: cheungjp@hku.hk-
dc.identifier.emailZhang, T: tgzhang@hku.hk-
dc.identifier.authorityCheung, JPY=rp01685-
dc.identifier.authorityZhang, T=rp02821-
dc.identifier.hkuros322956-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats