File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Synergistic additive-mediated CVD growth and chemical modification of 2D materials

TitleSynergistic additive-mediated CVD growth and chemical modification of 2D materials
Authors
Issue Date2019
Citation
Chemical Society Reviews, 2019, v. 48, n. 17, p. 4639-4654 How to Cite?
AbstractResearch on 2D materials has recently become one of the hottest topics that has attracted broad interdisciplinary attention. 2D materials offer fascinating platforms for fundamental science and technological explorations at the nanometer scale and molecular level, and exhibit diverse potential applications for future advanced nano-photonics and electronics. The chemical vapor deposition (CVD) technique has shown great promise for producing high-quality 2D materials with superior electro-optical performance. However, it is difficult to synthesize continuous single-crystal 2D materials with large domain sizes and good uniformity due to the low vapor pressure of their precursors. It has been observed that the addition of selected synergistic additives to the CVD process under mild conditions can result in uniformly large-area and highly crystalline monolayer 2D materials with exceptional optical/electrical properties. Moreover, the 2D material-based devices chemically modified by synergistic additives can achieve superior performances compared to those previously reported. In this review, we compare several typical synergistic additive-mediated CVD growth processes of 2D materials, as well as their superior properties, and provide some perspectives and challenges for the future of this emerging research field.
Persistent Identifierhttp://hdl.handle.net/10722/298324
ISSN
2021 Impact Factor: 60.615
2020 SCImago Journal Rankings: 15.598
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorJiang, Jizhou-
dc.contributor.authorLi, Neng-
dc.contributor.authorZou, Jing-
dc.contributor.authorZhou, Xing-
dc.contributor.authorEda, Goki-
dc.contributor.authorZhang, Qingfu-
dc.contributor.authorZhang, Hua-
dc.contributor.authorLi, Lain Jong-
dc.contributor.authorZhai, Tianyou-
dc.contributor.authorWee, Andrew T.S.-
dc.date.accessioned2021-04-08T03:08:09Z-
dc.date.available2021-04-08T03:08:09Z-
dc.date.issued2019-
dc.identifier.citationChemical Society Reviews, 2019, v. 48, n. 17, p. 4639-4654-
dc.identifier.issn0306-0012-
dc.identifier.urihttp://hdl.handle.net/10722/298324-
dc.description.abstractResearch on 2D materials has recently become one of the hottest topics that has attracted broad interdisciplinary attention. 2D materials offer fascinating platforms for fundamental science and technological explorations at the nanometer scale and molecular level, and exhibit diverse potential applications for future advanced nano-photonics and electronics. The chemical vapor deposition (CVD) technique has shown great promise for producing high-quality 2D materials with superior electro-optical performance. However, it is difficult to synthesize continuous single-crystal 2D materials with large domain sizes and good uniformity due to the low vapor pressure of their precursors. It has been observed that the addition of selected synergistic additives to the CVD process under mild conditions can result in uniformly large-area and highly crystalline monolayer 2D materials with exceptional optical/electrical properties. Moreover, the 2D material-based devices chemically modified by synergistic additives can achieve superior performances compared to those previously reported. In this review, we compare several typical synergistic additive-mediated CVD growth processes of 2D materials, as well as their superior properties, and provide some perspectives and challenges for the future of this emerging research field.-
dc.languageeng-
dc.relation.ispartofChemical Society Reviews-
dc.titleSynergistic additive-mediated CVD growth and chemical modification of 2D materials-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1039/c9cs00348g-
dc.identifier.pmid31410435-
dc.identifier.scopuseid_2-s2.0-85071688013-
dc.identifier.volume48-
dc.identifier.issue17-
dc.identifier.spage4639-
dc.identifier.epage4654-
dc.identifier.eissn1460-4744-
dc.identifier.isiWOS:000483595300006-
dc.identifier.issnl0306-0012-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats