File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: 应用神经网络和多元回归技术预测森林产量

Title应用神经网络和多元回归技术预测森林产量
Forest yield prediction with an artificial neural network and multiple regression
Authors
Keywords神经网络 (Neural network)
多元回归 (Multiple regression)
森林产量预测 (Forest yield prediction)
数据变换 (Data tranformation)
Issue Date1999
Citation
应用生态学报, 1999, v. 10, n. 2, p. 129-134 How to Cite?
Chinese Journal of Applied Ecology, 1999, v. 10, n. 2, p. 129-134 How to Cite?
Abstract应用传统统计技术常会因样本小和测量数据不符某种分布而受到限制。本文评价一种前馈型神经网络算法以预测落叶阔叶林产量。另外,还介绍一种由定性变为定量的数据变换方法,以用相对小的样本建立多元回归预测模型。数据变换方法有助于改善多元回归模型的预测效果。在本实验的条件下,研究结果表明神经网络技术能够产生最好的预测效果.
Use of traditional statistical techniques is often limited by shortage of observation samples and difference in data measurement scales. Neural network techniques have been extensively explored in many fields for prediction and classification as an alternative to statistical methods. In this paper, a feed-forward neural network algorithm for predicting hardwood yield is introduced and evaluated. In addition, we report a data transformation method developed for converting qualitative variable data to quantitative data for use in multiple regression when relatively few samples are available for building prediction models. The method that converts qualitative data into quantitative data is helpful to improve hardwood yield prediction accuracy by multiple linear regression models. In this study, the best prediction results using the neural network technique are obtained.
Persistent Identifierhttp://hdl.handle.net/10722/296470
ISSN
2023 SCImago Journal Rankings: 0.304

 

DC FieldValueLanguage
dc.contributor.authorPu, R.-
dc.contributor.authorGong, P.-
dc.contributor.authorYang, R.-
dc.date.accessioned2021-02-25T15:15:58Z-
dc.date.available2021-02-25T15:15:58Z-
dc.date.issued1999-
dc.identifier.citation应用生态学报, 1999, v. 10, n. 2, p. 129-134-
dc.identifier.citationChinese Journal of Applied Ecology, 1999, v. 10, n. 2, p. 129-134-
dc.identifier.issn1001-9332-
dc.identifier.urihttp://hdl.handle.net/10722/296470-
dc.description.abstract应用传统统计技术常会因样本小和测量数据不符某种分布而受到限制。本文评价一种前馈型神经网络算法以预测落叶阔叶林产量。另外,还介绍一种由定性变为定量的数据变换方法,以用相对小的样本建立多元回归预测模型。数据变换方法有助于改善多元回归模型的预测效果。在本实验的条件下,研究结果表明神经网络技术能够产生最好的预测效果.-
dc.description.abstractUse of traditional statistical techniques is often limited by shortage of observation samples and difference in data measurement scales. Neural network techniques have been extensively explored in many fields for prediction and classification as an alternative to statistical methods. In this paper, a feed-forward neural network algorithm for predicting hardwood yield is introduced and evaluated. In addition, we report a data transformation method developed for converting qualitative variable data to quantitative data for use in multiple regression when relatively few samples are available for building prediction models. The method that converts qualitative data into quantitative data is helpful to improve hardwood yield prediction accuracy by multiple linear regression models. In this study, the best prediction results using the neural network technique are obtained.-
dc.languagechi-
dc.relation.ispartof应用生态学报-
dc.relation.ispartofChinese Journal of Applied Ecology-
dc.subject神经网络 (Neural network)-
dc.subject多元回归 (Multiple regression)-
dc.subject森林产量预测 (Forest yield prediction)-
dc.subject数据变换 (Data tranformation)-
dc.title应用神经网络和多元回归技术预测森林产量-
dc.titleForest yield prediction with an artificial neural network and multiple regression-
dc.typeArticle-
dc.description.naturelink_to_OA_fulltext-
dc.identifier.scopuseid_2-s2.0-0032821606-
dc.identifier.volume10-
dc.identifier.issue2-
dc.identifier.spage129-
dc.identifier.epage134-
dc.identifier.issnl1001-9332-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats