File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1287/opre.2017.1705
- Scopus: eid_2-s2.0-85044500239
- WOS: WOS:000441553700018
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Inverse optimization with noisy data
Title | Inverse optimization with noisy data |
---|---|
Authors | |
Keywords | Statistical learning Semiparametric algorithm Estimation Inverse optimization |
Issue Date | 2018 |
Citation | Operations Research, 2018, v. 66, n. 3, p. 870-892 How to Cite? |
Abstract | © 2018 INFORMS. Inverse optimization refers to the inference of unknown parameters of an optimization problem based on knowledge of its optimal solutions. This paper considers inverse optimization in the setting where measurements of the optimal solutions of a convex optimization problem are corrupted by noise. We first provide a formulation for inverse optimization and prove it to be NP-hard. In contrast to existing methods, we show that the parameter estimates produced by our formulation are statistically consistent. Our approach involves combining a new duality-based reformulation for bilevel programs with a regularization scheme that smooths discontinuities in the formulation. Using epiconvergence theory,we showthe regularization parameter can be adjusted to approximate the original inverse optimization problem to arbitrary accuracy, whichwe use to prove our consistency results. Next, we propose two solution algorithms based on our duality-based formulation. The first is an enumeration algorithm that is applicable to settings where the dimensionality of the parameter space is modest, and the second is a semiparametric approach that combines nonparametric statistics with a modified version of our formulation. These numerical algorithms are shown to maintain the statistical consistency of the underlying formulation. Finally, using both synthetic and real data, we demonstrate that our approach performs competitively when compared with existing heuristics. |
Persistent Identifier | http://hdl.handle.net/10722/296167 |
ISSN | 2023 Impact Factor: 2.2 2023 SCImago Journal Rankings: 2.848 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Aswani, Anil | - |
dc.contributor.author | Shen, Zuo Jun Max | - |
dc.contributor.author | Siddiq, Auyon | - |
dc.date.accessioned | 2021-02-11T04:52:59Z | - |
dc.date.available | 2021-02-11T04:52:59Z | - |
dc.date.issued | 2018 | - |
dc.identifier.citation | Operations Research, 2018, v. 66, n. 3, p. 870-892 | - |
dc.identifier.issn | 0030-364X | - |
dc.identifier.uri | http://hdl.handle.net/10722/296167 | - |
dc.description.abstract | © 2018 INFORMS. Inverse optimization refers to the inference of unknown parameters of an optimization problem based on knowledge of its optimal solutions. This paper considers inverse optimization in the setting where measurements of the optimal solutions of a convex optimization problem are corrupted by noise. We first provide a formulation for inverse optimization and prove it to be NP-hard. In contrast to existing methods, we show that the parameter estimates produced by our formulation are statistically consistent. Our approach involves combining a new duality-based reformulation for bilevel programs with a regularization scheme that smooths discontinuities in the formulation. Using epiconvergence theory,we showthe regularization parameter can be adjusted to approximate the original inverse optimization problem to arbitrary accuracy, whichwe use to prove our consistency results. Next, we propose two solution algorithms based on our duality-based formulation. The first is an enumeration algorithm that is applicable to settings where the dimensionality of the parameter space is modest, and the second is a semiparametric approach that combines nonparametric statistics with a modified version of our formulation. These numerical algorithms are shown to maintain the statistical consistency of the underlying formulation. Finally, using both synthetic and real data, we demonstrate that our approach performs competitively when compared with existing heuristics. | - |
dc.language | eng | - |
dc.relation.ispartof | Operations Research | - |
dc.subject | Statistical learning | - |
dc.subject | Semiparametric algorithm | - |
dc.subject | Estimation | - |
dc.subject | Inverse optimization | - |
dc.title | Inverse optimization with noisy data | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1287/opre.2017.1705 | - |
dc.identifier.scopus | eid_2-s2.0-85044500239 | - |
dc.identifier.volume | 66 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 870 | - |
dc.identifier.epage | 892 | - |
dc.identifier.eissn | 1526-5463 | - |
dc.identifier.isi | WOS:000441553700018 | - |
dc.identifier.issnl | 0030-364X | - |