File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: A dependency parser for tweets

TitleA dependency parser for tweets
Authors
Issue Date2014
Citation
2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25-29 October 2014. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, p. 1001-1012 How to Cite?
Abstract© 2014 Association for Computational Linguistics. We describe a new dependency parser for English tweets, TWEEBOPARSER. The parser builds on several contributions: new syntactic annotations for a corpus of tweets (TWEEBANK), with conventions informed by the domain; adaptations to a statistical parsing algorithm; and a new approach to exploiting out-of-domain Penn Treebank data. Our experiments show that the parser achieves over 80% unlabeled attachment accuracy on our new, high-quality test set and measure the benefit of our contributions.
Persistent Identifierhttp://hdl.handle.net/10722/296123

 

DC FieldValueLanguage
dc.contributor.authorKong, Lingpeng-
dc.contributor.authorSchneider, Nathan-
dc.contributor.authorSwayamdipta, Swabha-
dc.contributor.authorBhatia, Archna-
dc.contributor.authorDyer, Chris-
dc.contributor.authorSmith, Noah A.-
dc.date.accessioned2021-02-11T04:52:53Z-
dc.date.available2021-02-11T04:52:53Z-
dc.date.issued2014-
dc.identifier.citation2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25-29 October 2014. In Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), 2014, p. 1001-1012-
dc.identifier.urihttp://hdl.handle.net/10722/296123-
dc.description.abstract© 2014 Association for Computational Linguistics. We describe a new dependency parser for English tweets, TWEEBOPARSER. The parser builds on several contributions: new syntactic annotations for a corpus of tweets (TWEEBANK), with conventions informed by the domain; adaptations to a statistical parsing algorithm; and a new approach to exploiting out-of-domain Penn Treebank data. Our experiments show that the parser achieves over 80% unlabeled attachment accuracy on our new, high-quality test set and measure the benefit of our contributions.-
dc.languageeng-
dc.relation.ispartofProceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP)-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleA dependency parser for tweets-
dc.typeConference_Paper-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.3115/v1/d14-1108-
dc.identifier.scopuseid_2-s2.0-84961307861-
dc.identifier.spage1001-
dc.identifier.epage1012-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats