File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1080/13816810.2020.1768556
- Scopus: eid_2-s2.0-85085278975
- PMID: 32429730
- WOS: WOS:000536400100001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: A de novo mutation in PITX2 underlies a unique form of Axenfeld-Rieger syndrome with corneal neovascularization and extensive proliferative vitreoretinopathy
Title | A de novo mutation in PITX2 underlies a unique form of Axenfeld-Rieger syndrome with corneal neovascularization and extensive proliferative vitreoretinopathy |
---|---|
Authors | |
Keywords | PITX2 Axenfeld-Rieger syndrome proliferative vitreoretinopathy corneal neovascularization |
Issue Date | 2020 |
Publisher | Taylor & Francis Inc. The Journal's web site is located at http://www.tandfonline.com/iopg |
Citation | Ophthalmic Genetics, 2020, v. 41 n. 4, p. 358-362 How to Cite? |
Abstract | Background:
Axenfeld-Rieger syndrome is characterized by a spectrum of anterior segment dysgenesis involving neural-crest-derived tissues, most commonly secondary to mutations in the transcription factor genes PITX2 and FOXC1.
Materials and Methods:
Single retrospective case report.
Results:
A full-term infant presented at 5 weeks of age with bilateral Peters anomaly and Axenfeld-Rieger syndrome, with development of atypical features of progressive corneal neovascularization and proliferative vitreoretinopathy. Despite surgical interventions, the patient progressed to bilateral phthisis bulbi by 22 months of age. Genetic testing revealed a novel de novo p.Leu212Valfs*39 mutation in PITX2, leading to loss of a C-terminal OAR domain that functions in transcriptional regulation.
Conclusions:
It is important to consider mutations in PITX2 in atypical cases of anterior segment dysgenesis that also present with abnormalities in the angiogenesis of the anterior and posterior segments. |
Persistent Identifier | http://hdl.handle.net/10722/295759 |
ISSN | 2023 Impact Factor: 1.2 2023 SCImago Journal Rankings: 0.509 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Kletke, SN | - |
dc.contributor.author | Vincent, A | - |
dc.contributor.author | Maynes, JT | - |
dc.contributor.author | Elbaz, U | - |
dc.contributor.author | Mireskandari, K | - |
dc.contributor.author | Lam, WC | - |
dc.contributor.author | Ali, A | - |
dc.date.accessioned | 2021-02-08T08:13:36Z | - |
dc.date.available | 2021-02-08T08:13:36Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Ophthalmic Genetics, 2020, v. 41 n. 4, p. 358-362 | - |
dc.identifier.issn | 1381-6810 | - |
dc.identifier.uri | http://hdl.handle.net/10722/295759 | - |
dc.description.abstract | Background: Axenfeld-Rieger syndrome is characterized by a spectrum of anterior segment dysgenesis involving neural-crest-derived tissues, most commonly secondary to mutations in the transcription factor genes PITX2 and FOXC1. Materials and Methods: Single retrospective case report. Results: A full-term infant presented at 5 weeks of age with bilateral Peters anomaly and Axenfeld-Rieger syndrome, with development of atypical features of progressive corneal neovascularization and proliferative vitreoretinopathy. Despite surgical interventions, the patient progressed to bilateral phthisis bulbi by 22 months of age. Genetic testing revealed a novel de novo p.Leu212Valfs*39 mutation in PITX2, leading to loss of a C-terminal OAR domain that functions in transcriptional regulation. Conclusions: It is important to consider mutations in PITX2 in atypical cases of anterior segment dysgenesis that also present with abnormalities in the angiogenesis of the anterior and posterior segments. | - |
dc.language | eng | - |
dc.publisher | Taylor & Francis Inc. The Journal's web site is located at http://www.tandfonline.com/iopg | - |
dc.relation.ispartof | Ophthalmic Genetics | - |
dc.rights | Accepted Manuscript (AM) i.e. Postprint This is an Accepted Manuscript of an article published by Taylor & Francis in [JOURNAL TITLE] on [date of publication], available online: http://www.tandfonline.com/[Article DOI]. | - |
dc.subject | PITX2 | - |
dc.subject | Axenfeld-Rieger syndrome | - |
dc.subject | proliferative vitreoretinopathy | - |
dc.subject | corneal neovascularization | - |
dc.title | A de novo mutation in PITX2 underlies a unique form of Axenfeld-Rieger syndrome with corneal neovascularization and extensive proliferative vitreoretinopathy | - |
dc.type | Article | - |
dc.identifier.email | Lam, WC: waichlam@hku.hk | - |
dc.identifier.authority | Lam, WC=rp02162 | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1080/13816810.2020.1768556 | - |
dc.identifier.pmid | 32429730 | - |
dc.identifier.scopus | eid_2-s2.0-85085278975 | - |
dc.identifier.hkuros | 321096 | - |
dc.identifier.volume | 41 | - |
dc.identifier.issue | 4 | - |
dc.identifier.spage | 358 | - |
dc.identifier.epage | 362 | - |
dc.identifier.isi | WOS:000536400100001 | - |
dc.publisher.place | United Kingdom | - |