File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A Human Liver-on-a-Chip Platform for Modeling Nonalcoholic Fatty Liver Disease

TitleA Human Liver-on-a-Chip Platform for Modeling Nonalcoholic Fatty Liver Disease
Authors
Keywordscoculture
liver steatosis
spheroid formation
nonalcoholic fatty liver disease (NAFLD)
liver-on-a-chip
Issue Date2019
Citation
Advanced Biosystems, 2019, v. 3, n. 8, article no. e1900104 How to Cite?
Abstract© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim The liver possesses a unique microenvironment with a complex internal vascular system and cell–cell interactions. Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease, and although much effort has been dedicated to building models to target NAFLD, most in vitro systems rely on simple models failing to recapitulate complex liver functions. Here, an in vitro system is presented to study NAFLD (steatosis) by coculturing human hepatocellular carcinoma (HepG2) cells and umbilical vein endothelial cells (HUVECs) into spheroids. Analysis of colocalization of HepG2–HUVECs along with the level of steatosis reveals that the NAFLD pathogenesis could be better modeled when 20% of HUVECs are presented in HepG2 spheroids. Spheroids with fat supplements progressed to the steatosis stage on day 2, which could be maintained for more than a week without being harmful for cells. Transferring spheroids onto a chip system with an array of interconnected hexagonal microwells proves helpful for monitoring functionality through increased albumin secretions with HepG2–HUVEC interactions and elevated production of reactive oxygen species for steatotic spheroids. The reversibility of steatosis is demonstrated by simply stopping fat-based diet or by antisteatotic drug administration, the latter showing a faster return of intracellular lipid levels to the basal level.
Persistent Identifierhttp://hdl.handle.net/10722/295445
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorLasli, Soufian-
dc.contributor.authorKim, Han Jun-
dc.contributor.authorLee, Kang Ju-
dc.contributor.authorSuurmond, Ceri Anne E.-
dc.contributor.authorGoudie, Marcus-
dc.contributor.authorBandaru, Praveen-
dc.contributor.authorSun, Wujin-
dc.contributor.authorZhang, Shiming-
dc.contributor.authorZhang, Niyuan-
dc.contributor.authorAhadian, Samad-
dc.contributor.authorDokmeci, Mehmet R.-
dc.contributor.authorLee, Junmin-
dc.contributor.authorKhademhosseini, Ali-
dc.date.accessioned2021-01-18T15:46:53Z-
dc.date.available2021-01-18T15:46:53Z-
dc.date.issued2019-
dc.identifier.citationAdvanced Biosystems, 2019, v. 3, n. 8, article no. e1900104-
dc.identifier.urihttp://hdl.handle.net/10722/295445-
dc.description.abstract© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim The liver possesses a unique microenvironment with a complex internal vascular system and cell–cell interactions. Nonalcoholic fatty liver disease (NAFLD) is the most common form of chronic liver disease, and although much effort has been dedicated to building models to target NAFLD, most in vitro systems rely on simple models failing to recapitulate complex liver functions. Here, an in vitro system is presented to study NAFLD (steatosis) by coculturing human hepatocellular carcinoma (HepG2) cells and umbilical vein endothelial cells (HUVECs) into spheroids. Analysis of colocalization of HepG2–HUVECs along with the level of steatosis reveals that the NAFLD pathogenesis could be better modeled when 20% of HUVECs are presented in HepG2 spheroids. Spheroids with fat supplements progressed to the steatosis stage on day 2, which could be maintained for more than a week without being harmful for cells. Transferring spheroids onto a chip system with an array of interconnected hexagonal microwells proves helpful for monitoring functionality through increased albumin secretions with HepG2–HUVEC interactions and elevated production of reactive oxygen species for steatotic spheroids. The reversibility of steatosis is demonstrated by simply stopping fat-based diet or by antisteatotic drug administration, the latter showing a faster return of intracellular lipid levels to the basal level.-
dc.languageeng-
dc.relation.ispartofAdvanced Biosystems-
dc.subjectcoculture-
dc.subjectliver steatosis-
dc.subjectspheroid formation-
dc.subjectnonalcoholic fatty liver disease (NAFLD)-
dc.subjectliver-on-a-chip-
dc.titleA Human Liver-on-a-Chip Platform for Modeling Nonalcoholic Fatty Liver Disease-
dc.typeArticle-
dc.description.naturelink_to_OA_fulltext-
dc.identifier.doi10.1002/adbi.201900104-
dc.identifier.pmid32648699-
dc.identifier.pmcidPMC7473489-
dc.identifier.scopuseid_2-s2.0-85067416754-
dc.identifier.volume3-
dc.identifier.issue8-
dc.identifier.spagearticle no. e1900104-
dc.identifier.epagearticle no. e1900104-
dc.identifier.eissn2366-7478-
dc.identifier.isiWOS:000481570200003-
dc.identifier.issnl2366-7478-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats