File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Strontium modulates osteogenic activity of bone cement composed of bioactive borosilicate glass particles by activating Wnt/β-catenin signaling pathway

TitleStrontium modulates osteogenic activity of bone cement composed of bioactive borosilicate glass particles by activating Wnt/β-catenin signaling pathway
Authors
KeywordsInjectable bone cement
Bioactive borosilicate glass
Strontium
Signaling pathway
Bone regeneration
Issue Date2020
PublisherKe Ai Publishing Communications Ltd. The Journal's web site is located at http://www.sciencedirect.com/science/journal/2452199X
Citation
Bioactive Materials, 2020, v. 5 n. 2, p. 334-347 How to Cite?
AbstractThere is a need for synthetic grafts to reconstruct large bone defects using minimal invasive surgery. Our previous study showed that incorporation of Sr into bioactive borate glass cement enhanced the osteogenic capacity in vivo. However, the amount of Sr in the cement to provide an optimal combination of physicochemical properties and capacity to stimulate bone regeneration and the underlying molecular mechanism of this stimulation is yet to be determined. In this study, bone cements composed of bioactive borosilicate glass particles substituted with varying amounts of Sr (0 mol% to 12 mol% SrO) were created and evaluated in vitro and in vivo. The setting time of the cement increased with Sr substitution of the glass. Upon immersion in PBS, the cement degraded and converted more slowly to HA (hydroxyapatite) with increasing Sr substitution. The released Sr2+ modulated the proliferation, differentiation, and mineralization of hBMSCs (human bone marrow mesenchymal stem cells) in vitro. Osteogenic characteristics were optimally enhanced with cement (designated BG6Sr) composed of particles substituted with 6mol% SrO. When implanted in rabbit femoral condyle defects, BG6Sr cement supported better peri-implant bone formation and bone-implant contact, comparing to cements substituted with 0mol% or 9mol% SrO. The underlying mechanism is involved in the activation of Wnt/β-catenin signaling pathway in osteogenic differentiation of hBMSCs. These results indicate that BG6Sr cement has a promising combination of physicochemical properties and biological performance for minimally invasive healing of bone defects.
Persistent Identifierhttp://hdl.handle.net/10722/290613
ISSN
2023 Impact Factor: 18.0
2023 SCImago Journal Rankings: 3.466
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorCUI, X-
dc.contributor.authorZHANG, Y-
dc.contributor.authorWANG, J-
dc.contributor.authorHUANG, C-
dc.contributor.authorWANG, Y-
dc.contributor.authorYANG, H-
dc.contributor.authorLIU, W-
dc.contributor.authorWANG, T-
dc.contributor.authorWANG, D-
dc.contributor.authorWANG, G-
dc.contributor.authorRuan, C-
dc.contributor.authorCHEN, D-
dc.contributor.authorLu, WW-
dc.contributor.authorHUANG, W-
dc.contributor.authorRAHAMAN, MN-
dc.contributor.authorPAN, H-
dc.date.accessioned2020-11-02T05:44:41Z-
dc.date.available2020-11-02T05:44:41Z-
dc.date.issued2020-
dc.identifier.citationBioactive Materials, 2020, v. 5 n. 2, p. 334-347-
dc.identifier.issn2452-199X-
dc.identifier.urihttp://hdl.handle.net/10722/290613-
dc.description.abstractThere is a need for synthetic grafts to reconstruct large bone defects using minimal invasive surgery. Our previous study showed that incorporation of Sr into bioactive borate glass cement enhanced the osteogenic capacity in vivo. However, the amount of Sr in the cement to provide an optimal combination of physicochemical properties and capacity to stimulate bone regeneration and the underlying molecular mechanism of this stimulation is yet to be determined. In this study, bone cements composed of bioactive borosilicate glass particles substituted with varying amounts of Sr (0 mol% to 12 mol% SrO) were created and evaluated in vitro and in vivo. The setting time of the cement increased with Sr substitution of the glass. Upon immersion in PBS, the cement degraded and converted more slowly to HA (hydroxyapatite) with increasing Sr substitution. The released Sr2+ modulated the proliferation, differentiation, and mineralization of hBMSCs (human bone marrow mesenchymal stem cells) in vitro. Osteogenic characteristics were optimally enhanced with cement (designated BG6Sr) composed of particles substituted with 6mol% SrO. When implanted in rabbit femoral condyle defects, BG6Sr cement supported better peri-implant bone formation and bone-implant contact, comparing to cements substituted with 0mol% or 9mol% SrO. The underlying mechanism is involved in the activation of Wnt/β-catenin signaling pathway in osteogenic differentiation of hBMSCs. These results indicate that BG6Sr cement has a promising combination of physicochemical properties and biological performance for minimally invasive healing of bone defects.-
dc.languageeng-
dc.publisherKe Ai Publishing Communications Ltd. The Journal's web site is located at http://www.sciencedirect.com/science/journal/2452199X-
dc.relation.ispartofBioactive Materials-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectInjectable bone cement-
dc.subjectBioactive borosilicate glass-
dc.subjectStrontium-
dc.subjectSignaling pathway-
dc.subjectBone regeneration-
dc.titleStrontium modulates osteogenic activity of bone cement composed of bioactive borosilicate glass particles by activating Wnt/β-catenin signaling pathway-
dc.typeArticle-
dc.identifier.emailLu, WW: wwlu@hku.hk-
dc.identifier.authorityLu, WW=rp00411-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1016/j.bioactmat.2020.02.016-
dc.identifier.pmid32206735-
dc.identifier.pmcidPMC7078288-
dc.identifier.scopuseid_2-s2.0-85081355470-
dc.identifier.hkuros317750-
dc.identifier.volume5-
dc.identifier.issue2-
dc.identifier.spage334-
dc.identifier.epage347-
dc.identifier.isiWOS:000533604500014-
dc.publisher.placeChina-
dc.identifier.issnl2452-199X-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats