File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: The Ps and Qs of alarmone synthesis in Staphylococcus aureus

TitleThe Ps and Qs of alarmone synthesis in Staphylococcus aureus
Authors
Keywordsadaptation
allosterism
carboxy terminal sequence
cell survival
controlled study
Issue Date2019
PublisherPublic Library of Science. The Journal's web site is located at http://www.plosone.org/home.action
Citation
PLoS One, 2019, v. 14 n. 10, p. article no. e0213630 How to Cite?
AbstractDuring the stringent response, bacteria synthesize guanosine-3',5'-bis(diphosphate) (ppGpp) and guanosine-5'-triphosphate 3'-diphosphate (pppGpp), which act as secondary messengers to promote cellular survival and adaptation. (p)ppGpp 'alarmones' are synthesized and/or hydrolyzed by proteins belonging to the RelA/SpoT Homologue (RSH) family. Many bacteria also encode 'small alarmone synthetase' (SAS) proteins (e.g. RelP, RelQ) which may also be capable of synthesizing a third alarmone: guanosine-5'-phosphate 3'-diphosphate (pGpp). Here, we report the biochemical properties of the Rel (RSH), RelP and RelQ proteins from Staphylococcus aureus (Sa-Rel, Sa-RelP, Sa-RelQ, respectively). Sa-Rel synthesized pppGpp more efficiently than ppGpp, but lacked the ability to produce pGpp. Sa-Rel efficiently hydrolyzed all three alarmones in a Mn(II) ion-dependent manner. The removal of the C-terminal regulatory domain of Sa-Rel increased its rate of (p)ppGpp synthesis ca. 10-fold, but had negligible effects on its rate of (pp)pGpp hydrolysis. Sa-RelP and Sa-RelQ efficiently synthesized pGpp in addition to pppGpp and ppGpp. The alarmone-synthesizing abilities of Sa-RelQ, but not Sa-RelP, were allosterically-stimulated by the addition of pppGpp, ppGpp or pGpp. The respective (pp)pGpp-synthesizing activities of Sa-RelP/Sa-RelQ were compared and contrasted with SAS homologues from Enterococcus faecalis (Ef-RelQ) and Streptococcus mutans (Sm-RelQ, Sm-RelP). Results indicated that EF-RelQ, Sm-RelQ and Sa-RelQ were functionally equivalent; but exhibited considerable variations in their respective biochemical properties, and the degrees to which alarmones and single-stranded RNA molecules allosterically modulated their respective alarmone-synthesizing activities. The respective (pp)pGpp-synthesizing capabilities of Sa-RelP and Sm-RelP proteins were inhibited by pGpp, ppGpp and pppGpp. Our results support the premise that RelP and RelQ proteins may synthesize pGpp in addition to (p)ppGpp within S. aureus and other Gram-positive bacterial species.
Descriptionarticle no.
Persistent Identifierhttp://hdl.handle.net/10722/290533
ISSN
2023 Impact Factor: 2.9
2023 SCImago Journal Rankings: 0.839
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorYang, N-
dc.contributor.authorXie, S-
dc.contributor.authorTang, NY-
dc.contributor.authorChoi, MY-
dc.contributor.authorWang, Y-
dc.contributor.authorWatt, RM-
dc.date.accessioned2020-11-02T05:43:36Z-
dc.date.available2020-11-02T05:43:36Z-
dc.date.issued2019-
dc.identifier.citationPLoS One, 2019, v. 14 n. 10, p. article no. e0213630-
dc.identifier.issn1932-6203-
dc.identifier.urihttp://hdl.handle.net/10722/290533-
dc.descriptionarticle no.-
dc.description.abstractDuring the stringent response, bacteria synthesize guanosine-3',5'-bis(diphosphate) (ppGpp) and guanosine-5'-triphosphate 3'-diphosphate (pppGpp), which act as secondary messengers to promote cellular survival and adaptation. (p)ppGpp 'alarmones' are synthesized and/or hydrolyzed by proteins belonging to the RelA/SpoT Homologue (RSH) family. Many bacteria also encode 'small alarmone synthetase' (SAS) proteins (e.g. RelP, RelQ) which may also be capable of synthesizing a third alarmone: guanosine-5'-phosphate 3'-diphosphate (pGpp). Here, we report the biochemical properties of the Rel (RSH), RelP and RelQ proteins from Staphylococcus aureus (Sa-Rel, Sa-RelP, Sa-RelQ, respectively). Sa-Rel synthesized pppGpp more efficiently than ppGpp, but lacked the ability to produce pGpp. Sa-Rel efficiently hydrolyzed all three alarmones in a Mn(II) ion-dependent manner. The removal of the C-terminal regulatory domain of Sa-Rel increased its rate of (p)ppGpp synthesis ca. 10-fold, but had negligible effects on its rate of (pp)pGpp hydrolysis. Sa-RelP and Sa-RelQ efficiently synthesized pGpp in addition to pppGpp and ppGpp. The alarmone-synthesizing abilities of Sa-RelQ, but not Sa-RelP, were allosterically-stimulated by the addition of pppGpp, ppGpp or pGpp. The respective (pp)pGpp-synthesizing activities of Sa-RelP/Sa-RelQ were compared and contrasted with SAS homologues from Enterococcus faecalis (Ef-RelQ) and Streptococcus mutans (Sm-RelQ, Sm-RelP). Results indicated that EF-RelQ, Sm-RelQ and Sa-RelQ were functionally equivalent; but exhibited considerable variations in their respective biochemical properties, and the degrees to which alarmones and single-stranded RNA molecules allosterically modulated their respective alarmone-synthesizing activities. The respective (pp)pGpp-synthesizing capabilities of Sa-RelP and Sm-RelP proteins were inhibited by pGpp, ppGpp and pppGpp. Our results support the premise that RelP and RelQ proteins may synthesize pGpp in addition to (p)ppGpp within S. aureus and other Gram-positive bacterial species.-
dc.languageeng-
dc.publisherPublic Library of Science. The Journal's web site is located at http://www.plosone.org/home.action-
dc.relation.ispartofPLoS One-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectadaptation-
dc.subjectallosterism-
dc.subjectcarboxy terminal sequence-
dc.subjectcell survival-
dc.subjectcontrolled study-
dc.titleThe Ps and Qs of alarmone synthesis in Staphylococcus aureus-
dc.typeArticle-
dc.identifier.emailYang, N: yangning@hku.hk-
dc.identifier.emailXie, S: shujie40@HKUCC-COM.hku.hk-
dc.identifier.emailWatt, RM: rmwatt@hku.hk-
dc.identifier.authorityWatt, RM=rp00043-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1371/journal.pone.0213630-
dc.identifier.pmid31613897-
dc.identifier.pmcidPMC6793942-
dc.identifier.scopuseid_2-s2.0-85073414930-
dc.identifier.hkuros318191-
dc.identifier.volume14-
dc.identifier.issue10-
dc.identifier.spagearticle no. e0213630-
dc.identifier.epagearticle no. e0213630-
dc.identifier.isiWOS:000532565700001-
dc.publisher.placeUnited States-
dc.identifier.issnl1932-6203-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats