File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.4208/cicp.020313.041013a
- Scopus: eid_2-s2.0-84892383543
- WOS: WOS:000328283100008
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Generalized multiscale finite element methods. nonlinear elliptic equations
Title | Generalized multiscale finite element methods. nonlinear elliptic equations |
---|---|
Authors | |
Keywords | High-contrast Generalized multiscale finite element method Nonlinear equations |
Issue Date | 2014 |
Citation | Communications in Computational Physics, 2014, v. 15, n. 3, p. 733-755 How to Cite? |
Abstract | In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press. |
Persistent Identifier | http://hdl.handle.net/10722/286889 |
ISSN | 2023 Impact Factor: 2.6 2023 SCImago Journal Rankings: 1.176 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Efendiev, Yalchin | - |
dc.contributor.author | Galvis, Juan | - |
dc.contributor.author | Li, Guanglian | - |
dc.contributor.author | Presho, Michael | - |
dc.date.accessioned | 2020-09-07T11:45:56Z | - |
dc.date.available | 2020-09-07T11:45:56Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | Communications in Computational Physics, 2014, v. 15, n. 3, p. 733-755 | - |
dc.identifier.issn | 1815-2406 | - |
dc.identifier.uri | http://hdl.handle.net/10722/286889 | - |
dc.description.abstract | In this paper we use the Generalized Multiscale Finite Element Method (GMsFEM) framework, introduced in [26], in order to solve nonlinear elliptic equations with high-contrast coefficients. The proposed solution method involves linearizing the equation so that coarse-grid quantities of previous solution iterates can be regarded as auxiliary parameters within the problem formulation. With this convention, we systematically construct respective coarse solution spaces that lend themselves to either continuous Galerkin (CG) or discontinuous Galerkin (DG) global formulations. Here, we use Symmetric Interior Penalty Discontinuous Galerkin approach. Both methods yield a predictable error decline that depends on the respective coarse space dimension, and we illustrate the effectiveness of the CG and DG formulations by offering a variety of numerical examples. © 2014 Global-Science Press. | - |
dc.language | eng | - |
dc.relation.ispartof | Communications in Computational Physics | - |
dc.subject | High-contrast | - |
dc.subject | Generalized multiscale finite element method | - |
dc.subject | Nonlinear equations | - |
dc.title | Generalized multiscale finite element methods. nonlinear elliptic equations | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.4208/cicp.020313.041013a | - |
dc.identifier.scopus | eid_2-s2.0-84892383543 | - |
dc.identifier.volume | 15 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 733 | - |
dc.identifier.epage | 755 | - |
dc.identifier.eissn | 1991-7120 | - |
dc.identifier.isi | WOS:000328283100008 | - |
dc.identifier.issnl | 1815-2406 | - |