File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1002/adma.202003437
- Scopus: eid_2-s2.0-85088992335
- PMID: 32761709
- WOS: WOS:000555849300001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: In-Memory Computing with Memristor Content Addressable Memories for Pattern Matching
Title | In-Memory Computing with Memristor Content Addressable Memories for Pattern Matching |
---|---|
Authors | |
Keywords | finite state machines memristors content addressable memory in-memory computing |
Issue Date | 2020 |
Citation | Advanced Materials, 2020, v. 32 n. 37, article no. 2003437 How to Cite? |
Abstract | © 2020 Wiley-VCH GmbH. The dramatic rise of data-intensive workloads has revived application-specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing “in-memory computation”. However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive—content addressable memory (CAM)—shows great promise for mapping a diverse range of computational models for in-memory computation, with recent ReRAM–CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing. |
Persistent Identifier | http://hdl.handle.net/10722/286814 |
ISSN | 2023 Impact Factor: 27.4 2023 SCImago Journal Rankings: 9.191 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Graves, Catherine E. | - |
dc.contributor.author | Li, Can | - |
dc.contributor.author | Sheng, Xia | - |
dc.contributor.author | Miller, Darrin | - |
dc.contributor.author | Ignowski, Jim | - |
dc.contributor.author | Kiyama, Lennie | - |
dc.contributor.author | Strachan, John Paul | - |
dc.date.accessioned | 2020-09-07T11:45:44Z | - |
dc.date.available | 2020-09-07T11:45:44Z | - |
dc.date.issued | 2020 | - |
dc.identifier.citation | Advanced Materials, 2020, v. 32 n. 37, article no. 2003437 | - |
dc.identifier.issn | 0935-9648 | - |
dc.identifier.uri | http://hdl.handle.net/10722/286814 | - |
dc.description.abstract | © 2020 Wiley-VCH GmbH. The dramatic rise of data-intensive workloads has revived application-specific computational hardware for continuing speed and power improvements, frequently achieved by limiting data movement and implementing “in-memory computation”. However, conventional complementary metal oxide semiconductor (CMOS) circuit designs can still suffer low power efficiency, motivating designs leveraging nonvolatile resistive random access memory (ReRAM), and with many studies focusing on crossbar circuit architectures. Another circuit primitive—content addressable memory (CAM)—shows great promise for mapping a diverse range of computational models for in-memory computation, with recent ReRAM–CAM designs proposed but few experimentally demonstrated. Here, programming and control of memristors across an 86 × 12 memristor ternary CAM (TCAM) array integrated with CMOS are demonstrated, and parameter tradeoffs for optimizing speed and search margin are evaluated. In addition to smaller area, this memristor TCAM results in significantly lower power due to very low programmable conductance states, motivating CAM use in a wider range of computational applications than conventional TCAMs are confined to today. Finally, the first experimental demonstration of two computational models in memristor TCAM arrays is reported: regular expression matching in a finite state machine for network security intrusion detection and definable inexact pattern matching in a Levenshtein automata for genomic sequencing. | - |
dc.language | eng | - |
dc.relation.ispartof | Advanced Materials | - |
dc.subject | finite state machines | - |
dc.subject | memristors | - |
dc.subject | content addressable memory | - |
dc.subject | in-memory computing | - |
dc.title | In-Memory Computing with Memristor Content Addressable Memories for Pattern Matching | - |
dc.type | Article | - |
dc.description.nature | link_to_subscribed_fulltext | - |
dc.identifier.doi | 10.1002/adma.202003437 | - |
dc.identifier.pmid | 32761709 | - |
dc.identifier.scopus | eid_2-s2.0-85088992335 | - |
dc.identifier.volume | 32 | - |
dc.identifier.issue | 37 | - |
dc.identifier.spage | article no. 2003437 | - |
dc.identifier.epage | article no. 2003437 | - |
dc.identifier.eissn | 1521-4095 | - |
dc.identifier.isi | WOS:000555849300001 | - |
dc.identifier.issnl | 0935-9648 | - |