File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Comparative Whole-Genomic Analysis of an Ancient L2 Lineage Mycobacterium tuberculosis Reveals a Novel Phylogenetic Clade and Common Genetic Determinants of Hypervirulent Strains

TitleComparative Whole-Genomic Analysis of an Ancient L2 Lineage Mycobacterium tuberculosis Reveals a Novel Phylogenetic Clade and Common Genetic Determinants of Hypervirulent Strains
Authors
KeywordsMycobacterium tuberculosis
hypervirulent
macrophage
Pacbio
lineage2
Issue Date2018
PublisherFrontiers Research Foundation. The Journal's web site is located at http://www.frontiersin.org/Cellular_and_Infection_Microbiology
Citation
Frontiers in Cellular and Infection Microbiology, 2018, v. 7, p. article no. 539 How to Cite?
AbstractBackground: Development of improved therapeutics against tuberculosis (TB) is hindered by an inadequate understanding of the relationship between disease severity and genetic diversity of its causative agent, Mycobacterium tuberculosis. We previously isolated a hypervirulent M. tuberculosis strain H112 from an HIV-negative patient with an aggressive disease progression from pulmonary TB to tuberculous meningitis—the most severe manifestation of tuberculosis. Human macrophage challenge experiment demonstrated that the strain H112 exhibited significantly better intracellular survivability and induced lower level of TNF-α than the reference virulent strain H37Rv and other 123 clinical isolates. Aim: The present study aimed to identify the potential genetic determinants of mycobacterial virulence that were common to strain H112 and hypervirulent M. tuberculosis strains of the same phylogenetic clade isolated in other global regions. Methods: A low-virulent M. tuberculosis strain H54 which belonged to the same phylogenetic lineage (L2) as strain H112 was selected from a collection of 115 clinical isolates. Both H112 and H54 were whole-genome-sequenced using PacBio sequencing technology. A comparative genomics approach was adopted to identify mutations present in strain H112 but absent in strain H54. Subsequently, an extensive phylogenetic analysis was conducted by including all publically available M. tuberculosis genomes. Single-nucleotide-polymorphisms (SNPs) and structural variations (SVs) common to hypervirulent strains in the global collection of genomes were considered as potential genetic determinants of hypervirulence. Results:Sequencing data revealed that both H112 and H54 were identified as members of the same sub-lineage L2.2.1. After excluding the lineage-related mutations shared between H112 and H54, we analyzed the phylogenetic relatedness of H112 with global collection of M. tuberculosis genomes (n = 4,338), and identified a novel phylogenetic clade in which four hypervirulent strains isolated from geographically diverse regions were clustered together. All hypervirulent strains in the clade shared 12 SNPs and 5 SVs with H112, including those affecting key virulence-associated loci, notably, a deleterious SNP (rv0178 p. D150E) within mce1 operon and an intergenic deletion (854259_ 854261delCC) in close-proximity to phoP. Conclusion: The present study identified common genetic factors in a novel phylogenetic clade of hypervirulent M. tuberculosis. The causative role of these mutations in mycobacterial virulence should be validated in future study.
Persistent Identifierhttp://hdl.handle.net/10722/285305
ISSN
2021 Impact Factor: 6.073
2020 SCImago Journal Rankings: 1.812
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorRAJWANI, R-
dc.contributor.authorYam, WC-
dc.contributor.authorZHANG, Y-
dc.contributor.authorYU, K-
dc.contributor.authorWong, BKC-
dc.contributor.authorLEUNG, KSS-
dc.contributor.authorTAM, KKG-
dc.contributor.authorTULU, KT-
dc.contributor.authorZhu, L-
dc.contributor.authorSIU, GKH-
dc.date.accessioned2020-08-18T03:52:14Z-
dc.date.available2020-08-18T03:52:14Z-
dc.date.issued2018-
dc.identifier.citationFrontiers in Cellular and Infection Microbiology, 2018, v. 7, p. article no. 539-
dc.identifier.issn2235-2988-
dc.identifier.urihttp://hdl.handle.net/10722/285305-
dc.description.abstractBackground: Development of improved therapeutics against tuberculosis (TB) is hindered by an inadequate understanding of the relationship between disease severity and genetic diversity of its causative agent, Mycobacterium tuberculosis. We previously isolated a hypervirulent M. tuberculosis strain H112 from an HIV-negative patient with an aggressive disease progression from pulmonary TB to tuberculous meningitis—the most severe manifestation of tuberculosis. Human macrophage challenge experiment demonstrated that the strain H112 exhibited significantly better intracellular survivability and induced lower level of TNF-α than the reference virulent strain H37Rv and other 123 clinical isolates. Aim: The present study aimed to identify the potential genetic determinants of mycobacterial virulence that were common to strain H112 and hypervirulent M. tuberculosis strains of the same phylogenetic clade isolated in other global regions. Methods: A low-virulent M. tuberculosis strain H54 which belonged to the same phylogenetic lineage (L2) as strain H112 was selected from a collection of 115 clinical isolates. Both H112 and H54 were whole-genome-sequenced using PacBio sequencing technology. A comparative genomics approach was adopted to identify mutations present in strain H112 but absent in strain H54. Subsequently, an extensive phylogenetic analysis was conducted by including all publically available M. tuberculosis genomes. Single-nucleotide-polymorphisms (SNPs) and structural variations (SVs) common to hypervirulent strains in the global collection of genomes were considered as potential genetic determinants of hypervirulence. Results:Sequencing data revealed that both H112 and H54 were identified as members of the same sub-lineage L2.2.1. After excluding the lineage-related mutations shared between H112 and H54, we analyzed the phylogenetic relatedness of H112 with global collection of M. tuberculosis genomes (n = 4,338), and identified a novel phylogenetic clade in which four hypervirulent strains isolated from geographically diverse regions were clustered together. All hypervirulent strains in the clade shared 12 SNPs and 5 SVs with H112, including those affecting key virulence-associated loci, notably, a deleterious SNP (rv0178 p. D150E) within mce1 operon and an intergenic deletion (854259_ 854261delCC) in close-proximity to phoP. Conclusion: The present study identified common genetic factors in a novel phylogenetic clade of hypervirulent M. tuberculosis. The causative role of these mutations in mycobacterial virulence should be validated in future study.-
dc.languageeng-
dc.publisherFrontiers Research Foundation. The Journal's web site is located at http://www.frontiersin.org/Cellular_and_Infection_Microbiology-
dc.relation.ispartofFrontiers in Cellular and Infection Microbiology-
dc.rightsThis Document is Protected by copyright and was first published by Frontiers. All rights reserved. It is reproduced with permission.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subjectMycobacterium tuberculosis-
dc.subjecthypervirulent-
dc.subjectmacrophage-
dc.subjectPacbio-
dc.subjectlineage2-
dc.titleComparative Whole-Genomic Analysis of an Ancient L2 Lineage Mycobacterium tuberculosis Reveals a Novel Phylogenetic Clade and Common Genetic Determinants of Hypervirulent Strains-
dc.typeArticle-
dc.identifier.emailYam, WC: wcyam@hku.hk-
dc.identifier.authorityYam, WC=rp00313-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.3389/fcimb.2017.00539-
dc.identifier.pmid29376038-
dc.identifier.pmcidPMC5770396-
dc.identifier.scopuseid_2-s2.0-85040516336-
dc.identifier.hkuros312844-
dc.identifier.volume7-
dc.identifier.spagearticle no. 539-
dc.identifier.epagearticle no. 539-
dc.identifier.isiWOS:000419903200002-
dc.publisher.placeSwitzerland-
dc.identifier.issnl2235-2988-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats