File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: Role of deubiquitylases in influenza A virus infection and immunity

TitleRole of deubiquitylases in influenza A virus infection and immunity
Authors
Advisors
Issue Date2019
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Akhee, S. J.. (2019). Role of deubiquitylases in influenza A virus infection and immunity. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR.
AbstractUbiquitylation is a cellular post-translational modification (PTM), routinely targeted by pathogens to deregulate and hijack host intracellular pathways. During Influenza A virus (IAV) infection, the host ubiquitylation machinery is significantly altered and exploited for RIG-I mediated viral sensing and immune response. To comprehensively characterize the ubiquitylation machinery hijacked by IAV in mammalian cells, we designed and employed a chemoenzymatic strategy to identify specific deubiquitylases (DUBs) that are induced upon IAV infections. Using a C-terminal vinyl methyl ester modified HA-tagged ubiquitin (HA-Ub-vme) combined with large-scale immunoprecipitation and mass spectrometry we identified DUBs that are upregulated in IAV infected cells. Among others, OTUB1 was identified as a deubiquitylase that is upregulated upon IAV infection. Interferon β treatment alone could also induce OTUB1 expression in A549 cells, suggesting it is an IFN-I induced host factor. To functionally characterize OTUB1 in IAV infection, CRISPR/Cas9 genome editing was utilized to generate OTUB1-deleted A549 cells. OTUB1-deficient (OTUB1-/- ) cells produced significantly less viral progeny, which were rescued by introduction of OTUB1 in OTUB1-/- cells. Further investigation showed severely defective polymerase activity in OTUB1-/- cells compared to WT. Influenza A viral protein PB2 which is essential for viral polymerase activity interacted directly with OTUB1 as measured by co-immunoprecipitation and co-localization score. Lack of OTUB1 was shown to be associated with a higher K-48 linked polyubiquitylation of PB2, suggesting a vital role of OTUB1 in regulating polymerase activity through deubiquitylation of PB2. Additionally, OTUB1-/- cells were defective in production of both IFN-α as well as pro-inflammatory cytokines compared to the WT when subjected to IAV infection. Further investigation of OTUB1-/- cells upon infection showed a significant redution in IRF and NFB activation, upstream of IFN and cytokines respectively. Through the use of proximity-based labeling, components of the RIG-I signaling pathway were found to be highly enriched in the OTUB1 interactome. Furthermore, OTUB1 was shown to directly interact with IAV viral protein NS1 known for its RIG-I antagonism and was shown to be degraded without proteasome inhibitor treatment upn IAV infection. Immunoprecipitated NS1 samples were shown to be enriched in K-48 and K-63 linked polyubiquitylation and formed complexes with TRAF3 and RIG-I, which have been previously reported as NS1 interactors. In OTUB1-/- cells, neither the ubiquitylated material, nor the RIG-I complex was detectable upon NS1 pull-down. The NS1-RIG-I interaction is known to be integral in the function of NS1 to limit IRF and NFB activation, eventually leading to dampened antiviral response. We find OTUB1 to be an essential determinant in the formation of NS1-RIG-I complex and mediation of the downstream antiviral responses. Apart from innate immune responses associated with IAV, ubiquitylation also plays a significant role in the adaptive immune responses, such as T cell receptor (TCR) signaling. We identified Ubiquitin-specific peptidase (Usp) 12 as a positive regulator highly enriched T lymphocytes and a crucial component of TCR expression at the cell surface. These findings provided novel insights in fine-tuning host signaling cascades both in IAV infection and immunity, identifying new avenues for the development of potential therapeutic targets.
DegreeDoctor of Philosophy
SubjectInfluenza A virus
Proteinase
Ubiquitin
Dept/ProgramPublic Health
Persistent Identifierhttp://hdl.handle.net/10722/278458

 

DC FieldValueLanguage
dc.contributor.advisorBruzzone, R-
dc.contributor.advisorSanyal, S-
dc.contributor.authorAkhee, Sabiha Jahan-
dc.date.accessioned2019-10-09T01:17:48Z-
dc.date.available2019-10-09T01:17:48Z-
dc.date.issued2019-
dc.identifier.citationAkhee, S. J.. (2019). Role of deubiquitylases in influenza A virus infection and immunity. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR.-
dc.identifier.urihttp://hdl.handle.net/10722/278458-
dc.description.abstractUbiquitylation is a cellular post-translational modification (PTM), routinely targeted by pathogens to deregulate and hijack host intracellular pathways. During Influenza A virus (IAV) infection, the host ubiquitylation machinery is significantly altered and exploited for RIG-I mediated viral sensing and immune response. To comprehensively characterize the ubiquitylation machinery hijacked by IAV in mammalian cells, we designed and employed a chemoenzymatic strategy to identify specific deubiquitylases (DUBs) that are induced upon IAV infections. Using a C-terminal vinyl methyl ester modified HA-tagged ubiquitin (HA-Ub-vme) combined with large-scale immunoprecipitation and mass spectrometry we identified DUBs that are upregulated in IAV infected cells. Among others, OTUB1 was identified as a deubiquitylase that is upregulated upon IAV infection. Interferon β treatment alone could also induce OTUB1 expression in A549 cells, suggesting it is an IFN-I induced host factor. To functionally characterize OTUB1 in IAV infection, CRISPR/Cas9 genome editing was utilized to generate OTUB1-deleted A549 cells. OTUB1-deficient (OTUB1-/- ) cells produced significantly less viral progeny, which were rescued by introduction of OTUB1 in OTUB1-/- cells. Further investigation showed severely defective polymerase activity in OTUB1-/- cells compared to WT. Influenza A viral protein PB2 which is essential for viral polymerase activity interacted directly with OTUB1 as measured by co-immunoprecipitation and co-localization score. Lack of OTUB1 was shown to be associated with a higher K-48 linked polyubiquitylation of PB2, suggesting a vital role of OTUB1 in regulating polymerase activity through deubiquitylation of PB2. Additionally, OTUB1-/- cells were defective in production of both IFN-α as well as pro-inflammatory cytokines compared to the WT when subjected to IAV infection. Further investigation of OTUB1-/- cells upon infection showed a significant redution in IRF and NFB activation, upstream of IFN and cytokines respectively. Through the use of proximity-based labeling, components of the RIG-I signaling pathway were found to be highly enriched in the OTUB1 interactome. Furthermore, OTUB1 was shown to directly interact with IAV viral protein NS1 known for its RIG-I antagonism and was shown to be degraded without proteasome inhibitor treatment upn IAV infection. Immunoprecipitated NS1 samples were shown to be enriched in K-48 and K-63 linked polyubiquitylation and formed complexes with TRAF3 and RIG-I, which have been previously reported as NS1 interactors. In OTUB1-/- cells, neither the ubiquitylated material, nor the RIG-I complex was detectable upon NS1 pull-down. The NS1-RIG-I interaction is known to be integral in the function of NS1 to limit IRF and NFB activation, eventually leading to dampened antiviral response. We find OTUB1 to be an essential determinant in the formation of NS1-RIG-I complex and mediation of the downstream antiviral responses. Apart from innate immune responses associated with IAV, ubiquitylation also plays a significant role in the adaptive immune responses, such as T cell receptor (TCR) signaling. We identified Ubiquitin-specific peptidase (Usp) 12 as a positive regulator highly enriched T lymphocytes and a crucial component of TCR expression at the cell surface. These findings provided novel insights in fine-tuning host signaling cascades both in IAV infection and immunity, identifying new avenues for the development of potential therapeutic targets. -
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subject.lcshInfluenza A virus-
dc.subject.lcshProteinase-
dc.subject.lcshUbiquitin-
dc.titleRole of deubiquitylases in influenza A virus infection and immunity-
dc.typePG_Thesis-
dc.description.thesisnameDoctor of Philosophy-
dc.description.thesislevelDoctoral-
dc.description.thesisdisciplinePublic Health-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_991044146573103414-
dc.date.hkucongregation2019-
dc.identifier.mmsid991044146573103414-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats