File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Evolution of the superconductivity dome in the two-dimensional Hubbard model

TitleEvolution of the superconductivity dome in the two-dimensional Hubbard model
Authors
Issue Date2013
PublisherAmerican Physical Society. The Journal's web site is located at http://journals.aps.org/prb/
Citation
Physical Review B (Condensed Matter and Materials Physics), 2013, v. 88 n. 24, article no. 245110 How to Cite?
AbstractIn a recent publication, we identified a line of Lifshitz transition points separating the Fermi liquid and pseudogap regions in the hole-doped two-dimensional Hubbard model. Here, we extend the study to further determine the superconducting transition temperature in the phase diagram. By means of large-scale dynamical cluster quantum Monte Carlo simulations, we are able to identify the evolution of the d-wave superconducting dome in the hole-dope side of the phase diagram, with next-nearest-neighbor hopping (t′), chemical potential, and temperature as control parameters. To obtain the superconducting transition temperature Tc, we employ two-particle measurements of the pairing susceptibilities. As t′goes from positive to negative values, we find the d-wave projected irreducible pairing vertex function is enhanced, and the curvature of its doping dependence changes from convex to concave, which fixes the position of the maximum superconducting temperature at the same filling (n≈0.85) and constraints the dome from precisely following the Lifshitz line. We furthermore decompose the irreducible vertex function into fully irreducible, charge and spin components via the parquet equations, and consistently find that the spin component dominates the pairing vertex function in the doping range where the dome is located. Our investigations deepen the understanding of the phase diagram of the two-dimensional Hubbard model and, more importantly, pose new questions to the field. For example, we found as t′goes from positive to negative values, the curvature of the pairing strength as a function of doping changes from convex to concave, and the nature of the dominant fluctuations changes from charge degree of freedom to spin degree of freedom. The study of these issues will lead to further understanding of the phase diagram of the two-dimensional Hubbard model and also the physics of the hole-doped cuprate high-temperature superconductors. © 2013 American Physical Society.
Persistent Identifierhttp://hdl.handle.net/10722/268655
ISSN
2014 Impact Factor: 3.736
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorChen, K. S.-
dc.contributor.authorMeng, Z. Y.-
dc.contributor.authorYang, S. X.-
dc.contributor.authorPruschke, T.-
dc.contributor.authorMoreno, J.-
dc.contributor.authorJarrell, M.-
dc.date.accessioned2019-03-25T08:00:20Z-
dc.date.available2019-03-25T08:00:20Z-
dc.date.issued2013-
dc.identifier.citationPhysical Review B (Condensed Matter and Materials Physics), 2013, v. 88 n. 24, article no. 245110-
dc.identifier.issn1098-0121-
dc.identifier.urihttp://hdl.handle.net/10722/268655-
dc.description.abstractIn a recent publication, we identified a line of Lifshitz transition points separating the Fermi liquid and pseudogap regions in the hole-doped two-dimensional Hubbard model. Here, we extend the study to further determine the superconducting transition temperature in the phase diagram. By means of large-scale dynamical cluster quantum Monte Carlo simulations, we are able to identify the evolution of the d-wave superconducting dome in the hole-dope side of the phase diagram, with next-nearest-neighbor hopping (t′), chemical potential, and temperature as control parameters. To obtain the superconducting transition temperature Tc, we employ two-particle measurements of the pairing susceptibilities. As t′goes from positive to negative values, we find the d-wave projected irreducible pairing vertex function is enhanced, and the curvature of its doping dependence changes from convex to concave, which fixes the position of the maximum superconducting temperature at the same filling (n≈0.85) and constraints the dome from precisely following the Lifshitz line. We furthermore decompose the irreducible vertex function into fully irreducible, charge and spin components via the parquet equations, and consistently find that the spin component dominates the pairing vertex function in the doping range where the dome is located. Our investigations deepen the understanding of the phase diagram of the two-dimensional Hubbard model and, more importantly, pose new questions to the field. For example, we found as t′goes from positive to negative values, the curvature of the pairing strength as a function of doping changes from convex to concave, and the nature of the dominant fluctuations changes from charge degree of freedom to spin degree of freedom. The study of these issues will lead to further understanding of the phase diagram of the two-dimensional Hubbard model and also the physics of the hole-doped cuprate high-temperature superconductors. © 2013 American Physical Society.-
dc.languageeng-
dc.publisherAmerican Physical Society. The Journal's web site is located at http://journals.aps.org/prb/-
dc.relation.ispartofPhysical Review B (Condensed Matter and Materials Physics)-
dc.titleEvolution of the superconductivity dome in the two-dimensional Hubbard model-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1103/PhysRevB.88.245110-
dc.identifier.scopuseid_2-s2.0-84890753309-
dc.identifier.volume88-
dc.identifier.issue24-
dc.identifier.spagearticle no. 245110-
dc.identifier.epagearticle no. 245110-
dc.identifier.eissn1550-235X-
dc.identifier.isiWOS:000328678600009-
dc.identifier.issnl1098-0121-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats