File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Placing unprecedented recent fir growth in a European-wide and Holocene-long context

TitlePlacing unprecedented recent fir growth in a European-wide and Holocene-long context
Authors
Issue Date2014
Citation
Frontiers in Ecology and the Environment, 2014, v. 12, n. 2, p. 100-106 How to Cite?
AbstractForest decline played a pivotal role in motivating Europe's political focus on sustainability around 35 years ago. Silver fir (Abies alba) exhibited a particularly severe dieback in the mid-1970s, but disentangling biotic from abiotic drivers remained challenging because both spatial and temporal data were lacking. Here, we analyze 14 136 samples from living trees and historical timbers, together with 356 pollen records, to evaluate recent fir growth from a continent-wide and Holocene-long perspective. Land use and climate change influenced forest growth over the past millennium, whereas anthropogenic emissions of acidic sulfates and nitrates became important after about 1850. Pollution control since the 1980s, together with a warmer but not drier climate, has facilitated an unprecedented surge in productivity across Central European fir stands. Restricted fir distribution prior to the Mesolithic and again in the Modern Era, separated by a peak in abundance during the Bronze Age, is indicative of the long-term interplay of changing temperatures, shifts in the hydrological cycle, and human impacts that have shaped forest structure and productivity. © The Ecological Society of America.
Persistent Identifierhttp://hdl.handle.net/10722/268617
ISSN
2021 Impact Factor: 13.780
2020 SCImago Journal Rankings: 3.918
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorBüntgen, Ulf-
dc.contributor.authorTegel, Willy-
dc.contributor.authorKaplan, Jed O.-
dc.contributor.authorSchaub, Marcus-
dc.contributor.authorHagedorn, Frank-
dc.contributor.authorBürgi, Matthias-
dc.contributor.authorBrázdil, Rudolf-
dc.contributor.authorHelle, Gerhard-
dc.contributor.authorCarrer, Marco-
dc.contributor.authorHeussner, Karl Uwe-
dc.contributor.authorHofmann, Jutta-
dc.contributor.authorKontic, Raymond-
dc.contributor.authorKyncl, Tomáš-
dc.contributor.authorKyncl, Josef-
dc.contributor.authorCamarero, J. Julio-
dc.contributor.authorWilly, Tinner-
dc.contributor.authorEsper, Jan-
dc.contributor.authorLiebhold, Andrew-
dc.date.accessioned2019-03-25T08:00:13Z-
dc.date.available2019-03-25T08:00:13Z-
dc.date.issued2014-
dc.identifier.citationFrontiers in Ecology and the Environment, 2014, v. 12, n. 2, p. 100-106-
dc.identifier.issn1540-9295-
dc.identifier.urihttp://hdl.handle.net/10722/268617-
dc.description.abstractForest decline played a pivotal role in motivating Europe's political focus on sustainability around 35 years ago. Silver fir (Abies alba) exhibited a particularly severe dieback in the mid-1970s, but disentangling biotic from abiotic drivers remained challenging because both spatial and temporal data were lacking. Here, we analyze 14 136 samples from living trees and historical timbers, together with 356 pollen records, to evaluate recent fir growth from a continent-wide and Holocene-long perspective. Land use and climate change influenced forest growth over the past millennium, whereas anthropogenic emissions of acidic sulfates and nitrates became important after about 1850. Pollution control since the 1980s, together with a warmer but not drier climate, has facilitated an unprecedented surge in productivity across Central European fir stands. Restricted fir distribution prior to the Mesolithic and again in the Modern Era, separated by a peak in abundance during the Bronze Age, is indicative of the long-term interplay of changing temperatures, shifts in the hydrological cycle, and human impacts that have shaped forest structure and productivity. © The Ecological Society of America.-
dc.languageeng-
dc.relation.ispartofFrontiers in Ecology and the Environment-
dc.titlePlacing unprecedented recent fir growth in a European-wide and Holocene-long context-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1890/130089-
dc.identifier.scopuseid_2-s2.0-84903180549-
dc.identifier.volume12-
dc.identifier.issue2-
dc.identifier.spage100-
dc.identifier.epage106-
dc.identifier.eissn1540-9309-
dc.identifier.isiWOS:000332047100005-
dc.identifier.issnl1540-9295-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats