File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Duality between the deconfined quantum-critical point and the bosonic topological transition

TitleDuality between the deconfined quantum-critical point and the bosonic topological transition
Authors
Issue Date2017
PublisherAmerican Physical Society. The Journal's web site is located at http://journals.aps.org/prx/
Citation
Physical Review X, 2017, v. 7 n. 3, article no. 031052 , p. 1-18 How to Cite?
AbstractRecently, significant progress has been made in (2 þ 1)-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities; i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the proposed dualities, one has attracted particular interest in the field of strongly correlated quantum-matter systems: the one relating the easy-plane noncompact CP1 model (NCCP1) and noncompact quantum electrodynamics (QED) with two flavors (N ¼ 2) of massless two-component Dirac fermions. The easy-plane NCCP1 model is the field theory of the putative deconfined quantum-critical point separating a planar (XY) antiferromagnet and a dimerized (valence-bond solid) ground state, while N ¼ 2 noncompact QED is the theory for the transition between a bosonic symmetry-protected topological phase and a trivial Mott insulator. In this work, we present strong numerical support for the proposed duality. We realize the N ¼ 2 noncompact QED at a critical point of an interacting fermion model on the bilayer honeycomb lattice and study it using determinant quantum Monte Carlo (QMC) simulations. Using stochastic series expansion QMC simulations, we study a planar version of the S ¼ 1=2 J-Q spin Hamiltonian (a quantum XY model with additional multispin couplings) and show that it hosts a continuous transition between the XY magnet and the valence-bond solid. The duality between the two systems, following from a mapping of their phase diagrams extending from their respective critical points, is supported by the good agreement between the critical exponents according to the proposed duality relationships. In the J-Q model, we find both continuous and first-order transitions, depending on the degree of planar anisotropy, with deconfined quantum criticality surviving only up to moderate strengths of the anisotropy. This explains previous claims of no deconfined quantum criticality in planar two-component spin models, which were in the strong-anisotropy regime, and opens doors to further investigations of the global phase diagram of systems hosting deconfined quantum-critical points.
Persistent Identifierhttp://hdl.handle.net/10722/268596
ISSN
2023 Impact Factor: 11.6
2023 SCImago Journal Rankings: 5.896
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorQin, Yan Qi-
dc.contributor.authorHe, Yuan Yao-
dc.contributor.authorYou, Yi Zhuang-
dc.contributor.authorLu, Zhong Yi-
dc.contributor.authorSen, Arnab-
dc.contributor.authorSandvik, Anders W.-
dc.contributor.authorXu, Cenke-
dc.contributor.authorMeng, Zi Yang-
dc.date.accessioned2019-03-25T08:00:10Z-
dc.date.available2019-03-25T08:00:10Z-
dc.date.issued2017-
dc.identifier.citationPhysical Review X, 2017, v. 7 n. 3, article no. 031052 , p. 1-18-
dc.identifier.issn2160-3308-
dc.identifier.urihttp://hdl.handle.net/10722/268596-
dc.description.abstractRecently, significant progress has been made in (2 þ 1)-dimensional conformal field theories without supersymmetry. In particular, it was realized that different Lagrangians may be related by hidden dualities; i.e., seemingly different field theories may actually be identical in the infrared limit. Among all the proposed dualities, one has attracted particular interest in the field of strongly correlated quantum-matter systems: the one relating the easy-plane noncompact CP1 model (NCCP1) and noncompact quantum electrodynamics (QED) with two flavors (N ¼ 2) of massless two-component Dirac fermions. The easy-plane NCCP1 model is the field theory of the putative deconfined quantum-critical point separating a planar (XY) antiferromagnet and a dimerized (valence-bond solid) ground state, while N ¼ 2 noncompact QED is the theory for the transition between a bosonic symmetry-protected topological phase and a trivial Mott insulator. In this work, we present strong numerical support for the proposed duality. We realize the N ¼ 2 noncompact QED at a critical point of an interacting fermion model on the bilayer honeycomb lattice and study it using determinant quantum Monte Carlo (QMC) simulations. Using stochastic series expansion QMC simulations, we study a planar version of the S ¼ 1=2 J-Q spin Hamiltonian (a quantum XY model with additional multispin couplings) and show that it hosts a continuous transition between the XY magnet and the valence-bond solid. The duality between the two systems, following from a mapping of their phase diagrams extending from their respective critical points, is supported by the good agreement between the critical exponents according to the proposed duality relationships. In the J-Q model, we find both continuous and first-order transitions, depending on the degree of planar anisotropy, with deconfined quantum criticality surviving only up to moderate strengths of the anisotropy. This explains previous claims of no deconfined quantum criticality in planar two-component spin models, which were in the strong-anisotropy regime, and opens doors to further investigations of the global phase diagram of systems hosting deconfined quantum-critical points.-
dc.languageeng-
dc.publisherAmerican Physical Society. The Journal's web site is located at http://journals.aps.org/prx/-
dc.relation.ispartofPhysical Review X-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleDuality between the deconfined quantum-critical point and the bosonic topological transition-
dc.typeArticle-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1103/PhysRevX.7.031052-
dc.identifier.scopuseid_2-s2.0-85030697053-
dc.identifier.volume7-
dc.identifier.issue3-
dc.identifier.spagearticle no. 031052, p. 1-
dc.identifier.epagearticle no. 031052, p. 18-
dc.identifier.isiWOS:000411458600002-
dc.identifier.issnl2160-3308-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats