File Download
Supplementary
-
Citations:
- Appears in Collections:
Others: Aggregation for general populations without continuity or completeness
Title | Aggregation for general populations without continuity or completeness |
---|---|
Authors | |
Issue Date | 2017 |
Publisher | Munich Personal RePEc Archive. |
Citation | McCarthy, DP, Mikkola, K & Thomas, T (2017). Aggregation for general populations without continuity or completeness. Munich Personal RePEc Archive How to Cite? |
Abstract | We generalize Harsanyi's social aggregation theorem. We allow the population to be infinite, and merely assume that individual and social preferences are given by strongly independent preorders on a convex set of arbitrary dimension. Thus we assume neither completeness nor any form of continuity. Under Pareto indierence, the conclusion of Harsanyi's theorem nevertheless holds almost entirely unchanged when utility values are taken to be vectors in a product of lexicographic function spaces. The addition of weak or strong Pareto has essentially the same implications in the general case as it does in Harsanyi's original setting. |
Persistent Identifier | http://hdl.handle.net/10722/257597 |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | McCarthy, DP | - |
dc.contributor.author | Mikkola, K | - |
dc.contributor.author | Thomas, T | - |
dc.date.accessioned | 2018-08-08T04:55:27Z | - |
dc.date.available | 2018-08-08T04:55:27Z | - |
dc.date.issued | 2017 | - |
dc.identifier.citation | McCarthy, DP, Mikkola, K & Thomas, T (2017). Aggregation for general populations without continuity or completeness. Munich Personal RePEc Archive | - |
dc.identifier.uri | http://hdl.handle.net/10722/257597 | - |
dc.description.abstract | We generalize Harsanyi's social aggregation theorem. We allow the population to be infinite, and merely assume that individual and social preferences are given by strongly independent preorders on a convex set of arbitrary dimension. Thus we assume neither completeness nor any form of continuity. Under Pareto indierence, the conclusion of Harsanyi's theorem nevertheless holds almost entirely unchanged when utility values are taken to be vectors in a product of lexicographic function spaces. The addition of weak or strong Pareto has essentially the same implications in the general case as it does in Harsanyi's original setting. | - |
dc.language | eng | - |
dc.publisher | Munich Personal RePEc Archive. | - |
dc.title | Aggregation for general populations without continuity or completeness | - |
dc.type | Others | - |
dc.identifier.email | McCarthy, DP: mccarthy@hku.hk | - |
dc.identifier.authority | McCarthy, DP=rp01447 | - |
dc.description.nature | link_to_OA_fulltext | - |
dc.identifier.hkuros | 275700 | - |