File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Efficient neural networks for solving variational inequalities

TitleEfficient neural networks for solving variational inequalities
Authors
KeywordsExponential stability
Variational inequalities
Pseudo-monotone mapping
Projection neural networks
Co-coercive mappings
Issue Date2012
Citation
Neurocomputing, 2012, v. 86, p. 97-106 How to Cite?
AbstractIn this paper, we propose efficient neural network models for solving a class of variational inequality problems. Our first model can be viewed as a generalization of the basic projection neural network proposed by Friesz et al. [3]. As the basic projection neural network, it only needs some function evaluations and projections onto the constraint set, which makes the model very easy to implement, especially when the constraint set has some special structure such as a box, or a ball. Under the condition that the underlying mapping F is pseudo-monotone with respect to a solution, a condition that is much weaker than those required by the basic projection neural network, we prove the global convergence of the proposed neural network. If F is strongly pseudo-monotone, we prove its globally exponential stability. Then to improve the efficient of the neural network, we modify it by choosing a new direction that is bounded away from zero. Under the condition that the underlying mapping F is co-coercive, a condition that is a little stronger than pseudo-monotone but is still weaker than those required by the basic projection neural network, we prove the exponential stability and global convergence of the improved model. We also reported some computational results, which illustrated that the new method is more efficient than that of Friesz et al. [3] . © 2012 Elsevier B.V.
Persistent Identifierhttp://hdl.handle.net/10722/250996
ISSN
2023 Impact Factor: 5.5
2023 SCImago Journal Rankings: 1.815
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorJiang, Suoliang-
dc.contributor.authorHan, Deren-
dc.contributor.authorYuan, Xiaoming-
dc.date.accessioned2018-02-01T01:54:17Z-
dc.date.available2018-02-01T01:54:17Z-
dc.date.issued2012-
dc.identifier.citationNeurocomputing, 2012, v. 86, p. 97-106-
dc.identifier.issn0925-2312-
dc.identifier.urihttp://hdl.handle.net/10722/250996-
dc.description.abstractIn this paper, we propose efficient neural network models for solving a class of variational inequality problems. Our first model can be viewed as a generalization of the basic projection neural network proposed by Friesz et al. [3]. As the basic projection neural network, it only needs some function evaluations and projections onto the constraint set, which makes the model very easy to implement, especially when the constraint set has some special structure such as a box, or a ball. Under the condition that the underlying mapping F is pseudo-monotone with respect to a solution, a condition that is much weaker than those required by the basic projection neural network, we prove the global convergence of the proposed neural network. If F is strongly pseudo-monotone, we prove its globally exponential stability. Then to improve the efficient of the neural network, we modify it by choosing a new direction that is bounded away from zero. Under the condition that the underlying mapping F is co-coercive, a condition that is a little stronger than pseudo-monotone but is still weaker than those required by the basic projection neural network, we prove the exponential stability and global convergence of the improved model. We also reported some computational results, which illustrated that the new method is more efficient than that of Friesz et al. [3] . © 2012 Elsevier B.V.-
dc.languageeng-
dc.relation.ispartofNeurocomputing-
dc.subjectExponential stability-
dc.subjectVariational inequalities-
dc.subjectPseudo-monotone mapping-
dc.subjectProjection neural networks-
dc.subjectCo-coercive mappings-
dc.titleEfficient neural networks for solving variational inequalities-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.neucom.2012.01.020-
dc.identifier.scopuseid_2-s2.0-84863413533-
dc.identifier.volume86-
dc.identifier.spage97-
dc.identifier.epage106-
dc.identifier.eissn1872-8286-
dc.identifier.isiWOS:000303428700009-
dc.identifier.issnl0925-2312-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats