File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Id2 and p53 participate in apoptosis during unloading-induced muscle atrophy

TitleId2 and p53 participate in apoptosis during unloading-induced muscle atrophy
Authors
KeywordsTumor suppressor gene
Aging
Inhibitor of DNA binding/differentiation protein
Programmed cell death
Issue Date2005
Citation
American Journal of Physiology - Cell Physiology, 2005, v. 288, n. 5 57-5 How to Cite?
AbstractApoptotic signaling was examined in the patagialis (PAT) muscles of young adult and old quail. One wing was loaded for 14 days to induce hypertrophy and then unloaded for 7 or 14 days to induce muscle atrophy. Although the nuclear Id2 protein content was not different between unloaded and control muscles in either age group, cytoplasmic Id2 protein content of unloaded muscles was higher than that in contralateral control muscles after 7 days of unloading in young quails. Nuclear and cytoplasmic p53 contents and the p53 nuclear index of the unloaded muscles were higher than those in control muscles after 7 days of unloading in young quails, whereas in aged quails, the p53 and Id2 contents and p53 nuclear index of the unloaded muscles were not altered by unloading. Immunofluorescent staining indicated that myo-nuclei and activated satellite cell nuclei contributed to the increased number of p53-positive nuclei. Conversely, unloading in either young adult or aged PAT muscles did not alter c-Myc protein content. Although Cu-Zn-SOD content was not different in unloaded and control muscles, Mn-SOD content increased in PAT muscles after 7 days of unloading in young quails, suggesting that unloading induced an oxidative disturbance in these muscles. Moderate correlational relationships existed among Id2, p53, c-Myc, SOD, apoptosis-regulatory factors, and TdT-mediated dUTP nick end labeling index. These data indicate that Id2 and p53 are involved in the apoptotic responses during unloading-induced muscle atrophy after hypertrophy in young adult birds. Furthermore, our data suggest that there is an aging-dependent regulation of Id2 and p53 during unloading of previously hypertrophied muscles. Copyright © 2005 the American Physiological Society.
Persistent Identifierhttp://hdl.handle.net/10722/244075
ISSN
2023 Impact Factor: 5.0
2023 SCImago Journal Rankings: 1.711
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorSiu, Parco M.-
dc.contributor.authorAlway, Stephen E.-
dc.date.accessioned2017-08-31T08:55:58Z-
dc.date.available2017-08-31T08:55:58Z-
dc.date.issued2005-
dc.identifier.citationAmerican Journal of Physiology - Cell Physiology, 2005, v. 288, n. 5 57-5-
dc.identifier.issn0363-6143-
dc.identifier.urihttp://hdl.handle.net/10722/244075-
dc.description.abstractApoptotic signaling was examined in the patagialis (PAT) muscles of young adult and old quail. One wing was loaded for 14 days to induce hypertrophy and then unloaded for 7 or 14 days to induce muscle atrophy. Although the nuclear Id2 protein content was not different between unloaded and control muscles in either age group, cytoplasmic Id2 protein content of unloaded muscles was higher than that in contralateral control muscles after 7 days of unloading in young quails. Nuclear and cytoplasmic p53 contents and the p53 nuclear index of the unloaded muscles were higher than those in control muscles after 7 days of unloading in young quails, whereas in aged quails, the p53 and Id2 contents and p53 nuclear index of the unloaded muscles were not altered by unloading. Immunofluorescent staining indicated that myo-nuclei and activated satellite cell nuclei contributed to the increased number of p53-positive nuclei. Conversely, unloading in either young adult or aged PAT muscles did not alter c-Myc protein content. Although Cu-Zn-SOD content was not different in unloaded and control muscles, Mn-SOD content increased in PAT muscles after 7 days of unloading in young quails, suggesting that unloading induced an oxidative disturbance in these muscles. Moderate correlational relationships existed among Id2, p53, c-Myc, SOD, apoptosis-regulatory factors, and TdT-mediated dUTP nick end labeling index. These data indicate that Id2 and p53 are involved in the apoptotic responses during unloading-induced muscle atrophy after hypertrophy in young adult birds. Furthermore, our data suggest that there is an aging-dependent regulation of Id2 and p53 during unloading of previously hypertrophied muscles. Copyright © 2005 the American Physiological Society.-
dc.languageeng-
dc.relation.ispartofAmerican Journal of Physiology - Cell Physiology-
dc.subjectTumor suppressor gene-
dc.subjectAging-
dc.subjectInhibitor of DNA binding/differentiation protein-
dc.subjectProgrammed cell death-
dc.titleId2 and p53 participate in apoptosis during unloading-induced muscle atrophy-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1152/ajpcell.00495.2004-
dc.identifier.pmid15601750-
dc.identifier.scopuseid_2-s2.0-17644417848-
dc.identifier.volume288-
dc.identifier.issue5 57-5-
dc.identifier.spagenull-
dc.identifier.epagenull-
dc.identifier.isiWOS:000228461700012-
dc.identifier.issnl0363-6143-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats