File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Tensor Computation: A New Framework for High-Dimensional Problems in EDA

TitleTensor Computation: A New Framework for High-Dimensional Problems in EDA
Authors
KeywordsDesign optimization
model order reduction
modeling and simulation
process variation
tensor
tensor completion
tensor decomposition
uncertainty quantification
Issue Date2017
PublisherIEEE. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43
Citation
IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, v. 36 n. 4, p. 521-536 How to Cite?
Persistent Identifierhttp://hdl.handle.net/10722/243077
ISSN
2023 Impact Factor: 2.7
2023 SCImago Journal Rankings: 0.957
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorZhang, Z-
dc.contributor.authorBatselier, K-
dc.contributor.authorLiu, H-
dc.contributor.authorDaniel, L-
dc.contributor.authorWong, N-
dc.date.accessioned2017-08-25T02:49:41Z-
dc.date.available2017-08-25T02:49:41Z-
dc.date.issued2017-
dc.identifier.citationIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 2017, v. 36 n. 4, p. 521-536-
dc.identifier.issn0278-0070-
dc.identifier.urihttp://hdl.handle.net/10722/243077-
dc.languageeng-
dc.publisherIEEE. The Journal's web site is located at http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=43-
dc.relation.ispartofIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems-
dc.rights©2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.-
dc.subjectDesign optimization-
dc.subjectmodel order reduction-
dc.subjectmodeling and simulation-
dc.subjectprocess variation-
dc.subjecttensor-
dc.subjecttensor completion-
dc.subjecttensor decomposition-
dc.subjectuncertainty quantification-
dc.titleTensor Computation: A New Framework for High-Dimensional Problems in EDA-
dc.typeArticle-
dc.identifier.emailBatselier, K: kbatseli@hku.hk-
dc.identifier.emailWong, N: nwong@eee.hku.hk-
dc.identifier.authorityWong, N=rp00190-
dc.description.naturepostprint-
dc.identifier.doi10.1109/TCAD.2016.2618879-
dc.identifier.scopuseid_2-s2.0-85017605201-
dc.identifier.hkuros274499-
dc.identifier.volume36-
dc.identifier.issue4-
dc.identifier.spage521-
dc.identifier.epage536-
dc.identifier.isiWOS:000398824500001-
dc.publisher.placeUnited States-
dc.identifier.issnl0278-0070-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats