File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Bacterial adhesion onto nanofiltration and reverse osmosis membranes: Effect of permeate flux

TitleBacterial adhesion onto nanofiltration and reverse osmosis membranes: Effect of permeate flux
Authors
KeywordsBacterial adhesion
Issue Date2014
Citation
Water Research, 2014, v. 63, p. 296-305 How to Cite?
AbstractThe influence of permeate flux on bacterial adhesion to NF and RO membranes was examined using two model Pseudomonas species, namely Pseudomonas fluorescens and Pseudomonas putida. To better understand the initial biofouling profile during NF/RO processes, deposition experiments were conducted in cross flow under permeate flux varying from 0.5 up to 120L/(hm2), using six NF and RO membranes each having different surface properties. All experiments were performed at a Reynolds number of 579. Complementary adhesion experiments were performed using Pseudomonas cells grown to early-, mid- and late-exponential growth phases to evaluate the effect of bacterial cell surface properties during cell adhesion under permeate flux conditions. Results from this study show that initial bacterial adhesion is strongly dependent on the permeate flux conditions, where increased adhesion was obtained with increased permeate flux, until a maximum of 40% coverage was reached. Membrane surface properties or bacterial growth stages was further found to have little impact on bacterial adhesion to NF and RO membrane surfaces under the conditions tested. These results emphasise the importance of conducting adhesion and biofouling experiments under realistic permeate flux conditions, and raises questions about the efficacy of the methods for the evaluation of antifouling membranes in which bacterial adhesion is commonly assessed under zero-flux or low flux conditions, unrepresentative of full-scale NF/RO processes. © 2014 Elsevier Ltd.
Persistent Identifierhttp://hdl.handle.net/10722/228194
ISSN
2023 Impact Factor: 11.4
2023 SCImago Journal Rankings: 3.596
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorSemião, Andrea J C-
dc.contributor.authorHabimana, Olivier-
dc.contributor.authorCasey, Eoin-
dc.date.accessioned2016-08-01T06:45:25Z-
dc.date.available2016-08-01T06:45:25Z-
dc.date.issued2014-
dc.identifier.citationWater Research, 2014, v. 63, p. 296-305-
dc.identifier.issn0043-1354-
dc.identifier.urihttp://hdl.handle.net/10722/228194-
dc.description.abstractThe influence of permeate flux on bacterial adhesion to NF and RO membranes was examined using two model Pseudomonas species, namely Pseudomonas fluorescens and Pseudomonas putida. To better understand the initial biofouling profile during NF/RO processes, deposition experiments were conducted in cross flow under permeate flux varying from 0.5 up to 120L/(hm2), using six NF and RO membranes each having different surface properties. All experiments were performed at a Reynolds number of 579. Complementary adhesion experiments were performed using Pseudomonas cells grown to early-, mid- and late-exponential growth phases to evaluate the effect of bacterial cell surface properties during cell adhesion under permeate flux conditions. Results from this study show that initial bacterial adhesion is strongly dependent on the permeate flux conditions, where increased adhesion was obtained with increased permeate flux, until a maximum of 40% coverage was reached. Membrane surface properties or bacterial growth stages was further found to have little impact on bacterial adhesion to NF and RO membrane surfaces under the conditions tested. These results emphasise the importance of conducting adhesion and biofouling experiments under realistic permeate flux conditions, and raises questions about the efficacy of the methods for the evaluation of antifouling membranes in which bacterial adhesion is commonly assessed under zero-flux or low flux conditions, unrepresentative of full-scale NF/RO processes. © 2014 Elsevier Ltd.-
dc.languageeng-
dc.relation.ispartofWater Research-
dc.subjectBacterial adhesion-
dc.titleBacterial adhesion onto nanofiltration and reverse osmosis membranes: Effect of permeate flux-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1016/j.watres.2014.06.031-
dc.identifier.pmid25016321-
dc.identifier.scopuseid_2-s2.0-84904250677-
dc.identifier.volume63-
dc.identifier.spage296-
dc.identifier.epage305-
dc.identifier.eissn1879-2448-
dc.identifier.isiWOS:000340991200029-
dc.identifier.issnl0043-1354-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats