File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Biogeographic variation in temperature drives performance of kelp gametophytes during warming

TitleBiogeographic variation in temperature drives performance of kelp gametophytes during warming
Authors
KeywordsAdaptation
Growth
Thermal optima
Ocean warming
Survival
Ecotype
Issue Date2014
Citation
Marine Ecology Progress Series, 2014, v. 513, p. 85-96 How to Cite?
Abstract© Inter-Research 2014 The capacity for thermal adjustment or adaptation is critical to population persistence in a warming ocean. Understanding such performance across a species' range can give insights into the extent of possible adjustment as well as spatial variation in vulnerability. This study tested the effects of temperature on the density and size of gametophytes of the habitat-forming kelp Ecklonia radiata, across its Australian distribution (between ∼9° and ∼33°S). Gametophytes from warm, intermediate and cool biogeographic regions were cultured over a temperature gradient from 12 to 26°C, revealing optimum temperatures of ∼18 to 23°C - well above current maximum temperatures in parts of the range - and a positive relationship between in situ temperature and thermal optima for performance. Optimum temperatures in warmer regions were more than 1°C higher than in cooler regions. Biogeographically, the thermal optima for gametophytes were more strongly linked to long-term temperature characteristics of a region (annual extremes, 3 yr range) than short-term variation (mean for the month prior) in sea temperature. These results document that present-day populations of E. radiata have adjusted their gametophyte thermal sensitivity according to their local environment, and further indicate that these differences are adaptive rather than phenotypic. Collectively, these findings suggest that the scope for thermal adaptation and gametophyte performance of E. radiata across most of its Australian distribution is within projected levels of future warming.
Persistent Identifierhttp://hdl.handle.net/10722/213435
ISSN
2021 Impact Factor: 2.915
2020 SCImago Journal Rankings: 1.151
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorMohring, Margaret B.-
dc.contributor.authorWernberg, Thomas-
dc.contributor.authorWright, Jeffrey T.-
dc.contributor.authorConnell, Sean D.-
dc.contributor.authorRussell, Bayden D.-
dc.date.accessioned2015-07-28T04:07:16Z-
dc.date.available2015-07-28T04:07:16Z-
dc.date.issued2014-
dc.identifier.citationMarine Ecology Progress Series, 2014, v. 513, p. 85-96-
dc.identifier.issn0171-8630-
dc.identifier.urihttp://hdl.handle.net/10722/213435-
dc.description.abstract© Inter-Research 2014 The capacity for thermal adjustment or adaptation is critical to population persistence in a warming ocean. Understanding such performance across a species' range can give insights into the extent of possible adjustment as well as spatial variation in vulnerability. This study tested the effects of temperature on the density and size of gametophytes of the habitat-forming kelp Ecklonia radiata, across its Australian distribution (between ∼9° and ∼33°S). Gametophytes from warm, intermediate and cool biogeographic regions were cultured over a temperature gradient from 12 to 26°C, revealing optimum temperatures of ∼18 to 23°C - well above current maximum temperatures in parts of the range - and a positive relationship between in situ temperature and thermal optima for performance. Optimum temperatures in warmer regions were more than 1°C higher than in cooler regions. Biogeographically, the thermal optima for gametophytes were more strongly linked to long-term temperature characteristics of a region (annual extremes, 3 yr range) than short-term variation (mean for the month prior) in sea temperature. These results document that present-day populations of E. radiata have adjusted their gametophyte thermal sensitivity according to their local environment, and further indicate that these differences are adaptive rather than phenotypic. Collectively, these findings suggest that the scope for thermal adaptation and gametophyte performance of E. radiata across most of its Australian distribution is within projected levels of future warming.-
dc.languageeng-
dc.relation.ispartofMarine Ecology Progress Series-
dc.subjectAdaptation-
dc.subjectGrowth-
dc.subjectThermal optima-
dc.subjectOcean warming-
dc.subjectSurvival-
dc.subjectEcotype-
dc.titleBiogeographic variation in temperature drives performance of kelp gametophytes during warming-
dc.typeArticle-
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.3354/meps10916-
dc.identifier.scopuseid_2-s2.0-84908479354-
dc.identifier.volume513-
dc.identifier.spage85-
dc.identifier.epage96-
dc.identifier.isiWOS:000344394400007-
dc.identifier.issnl0171-8630-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats