File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: Luminescent cyclometalated gold (III) complexes with ancillary N-heterocyclic carbene and alkynyl ligands : from design, synthesis, photophysics to supramolecular assembly and functions

TitleLuminescent cyclometalated gold (III) complexes with ancillary N-heterocyclic carbene and alkynyl ligands : from design, synthesis, photophysics to supramolecular assembly and functions
Authors
Advisors
Advisor(s):Yam, VWW
Issue Date2012
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Au, K. [區嘉雯]. (2012). Luminescent cyclometalated gold (III) complexes with ancillary N-heterocyclic carbene and alkynyl ligands : from design, synthesis, photophysics to supramolecular assembly and functions. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4775268
AbstractA library of luminescent cyclometalated gold(III) complexes containing various bis-cyclometalating R-C^N^C ligands derived from 2,6-diphenylpyridine and ancillary alkynyl ligands, [Au(R-C^N^C)(C≡CR’)], has been synthesized. Some of the complexes have been structurally determined by X-ray crystallography. These complexes were found to exhibit intense emission in dichloromethane solution at 298 K, originating from metal-perturbed triplet intraligand (IL) excited states of the R-C^N^C ligand, with substantial charge transfer character from the aryl moiety to the pyridyl ring. In the presence of electron-rich alkynyl ligands, the emission origin could be switched to an alkynyl-to-cyclometalating ligand ligand-to-ligand charge transfer (LLCT) excited state. This class of complexes was also demonstrated to show rich electroluminescence properties as emitters in organic light-emitting devices. In addition, the supramolecular assembly of this class of complexes has also been revealed in gelation studies. N-Heterocyclic carbenes have been incorporated into the gold(III) metal center to prepare a series of luminescent mononuclear and dinuclear gold(III) complexes, [{Au(C^N^C)}n(NHC)](PF6)n and [{Au(tBuC^N^CtBu)}n(NHC)]- (PF6)n (n = 1, 2). The X-ray crystal structures of most of the complexes have been determined. The emissions of these complexes were assigned to originate from the metal-perturbed intraligand excited state of the bis-cyclometalating ligand. One of the C2-bridged dinuclear complexes was found to exhibit two distinct reduction couples, tentatively correlated to the presence of significant intramolecular π-π interaction in the complex. Two novel series of luminescent mononuclear alkynylgold(III) complexes, [Au(C^N)(C≡CR)2] (HC^N = 2-phenylpyridine (Hppy) and derivatives) and [Au(C^N^N)(C≡CR)]PF6 (HC^N^N = 6-phenyl-2,2’-bipyridine and derivatives), have been synthesized. Some of the X-ray crystal structures have been determined. The former class of complexes with bidentate C^N ligands has been observed to show tunable emission spanning across the visible spectrum from 462 to 697 nm. With the exception of [Au(ppy)(C≡C-C6H4-NH2-p)2] which showed a low-energy band originated from a 3LLCT [π(C≡C-C6H4-NH2)→π*(C^N)] excited state, all complexes exhibited vibronic-structured emission bands originated from the intraligand transition of the cyclometalating C^N ligand in dichloromethane solution at 298 K. On the other hand, most of the complexes with the tridentate C^N^N-type ligand have been observed to exhibit vibronic-structured emission bands attributed to the intraligand transition of the C^N^N ligand in low-temperature butyronitrile glass.
DegreeDoctor of Philosophy
SubjectOrganogold compounds - Synthesis
Carbenes (Methylene compounds)
Heterocyclic compounds
Ligands
Dept/ProgramChemistry
Persistent Identifierhttp://hdl.handle.net/10722/207995
HKU Library Item IDb4775268

 

DC FieldValueLanguage
dc.contributor.advisorYam, VWW-
dc.contributor.authorAu, Ka-man-
dc.contributor.author區嘉雯-
dc.date.accessioned2015-02-06T14:19:32Z-
dc.date.available2015-02-06T14:19:32Z-
dc.date.issued2012-
dc.identifier.citationAu, K. [區嘉雯]. (2012). Luminescent cyclometalated gold (III) complexes with ancillary N-heterocyclic carbene and alkynyl ligands : from design, synthesis, photophysics to supramolecular assembly and functions. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4775268-
dc.identifier.urihttp://hdl.handle.net/10722/207995-
dc.description.abstractA library of luminescent cyclometalated gold(III) complexes containing various bis-cyclometalating R-C^N^C ligands derived from 2,6-diphenylpyridine and ancillary alkynyl ligands, [Au(R-C^N^C)(C≡CR’)], has been synthesized. Some of the complexes have been structurally determined by X-ray crystallography. These complexes were found to exhibit intense emission in dichloromethane solution at 298 K, originating from metal-perturbed triplet intraligand (IL) excited states of the R-C^N^C ligand, with substantial charge transfer character from the aryl moiety to the pyridyl ring. In the presence of electron-rich alkynyl ligands, the emission origin could be switched to an alkynyl-to-cyclometalating ligand ligand-to-ligand charge transfer (LLCT) excited state. This class of complexes was also demonstrated to show rich electroluminescence properties as emitters in organic light-emitting devices. In addition, the supramolecular assembly of this class of complexes has also been revealed in gelation studies. N-Heterocyclic carbenes have been incorporated into the gold(III) metal center to prepare a series of luminescent mononuclear and dinuclear gold(III) complexes, [{Au(C^N^C)}n(NHC)](PF6)n and [{Au(tBuC^N^CtBu)}n(NHC)]- (PF6)n (n = 1, 2). The X-ray crystal structures of most of the complexes have been determined. The emissions of these complexes were assigned to originate from the metal-perturbed intraligand excited state of the bis-cyclometalating ligand. One of the C2-bridged dinuclear complexes was found to exhibit two distinct reduction couples, tentatively correlated to the presence of significant intramolecular π-π interaction in the complex. Two novel series of luminescent mononuclear alkynylgold(III) complexes, [Au(C^N)(C≡CR)2] (HC^N = 2-phenylpyridine (Hppy) and derivatives) and [Au(C^N^N)(C≡CR)]PF6 (HC^N^N = 6-phenyl-2,2’-bipyridine and derivatives), have been synthesized. Some of the X-ray crystal structures have been determined. The former class of complexes with bidentate C^N ligands has been observed to show tunable emission spanning across the visible spectrum from 462 to 697 nm. With the exception of [Au(ppy)(C≡C-C6H4-NH2-p)2] which showed a low-energy band originated from a 3LLCT [π(C≡C-C6H4-NH2)→π*(C^N)] excited state, all complexes exhibited vibronic-structured emission bands originated from the intraligand transition of the cyclometalating C^N ligand in dichloromethane solution at 298 K. On the other hand, most of the complexes with the tridentate C^N^N-type ligand have been observed to exhibit vibronic-structured emission bands attributed to the intraligand transition of the C^N^N ligand in low-temperature butyronitrile glass.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.subject.lcshOrganogold compounds - Synthesis-
dc.subject.lcshCarbenes (Methylene compounds)-
dc.subject.lcshHeterocyclic compounds-
dc.subject.lcshLigands-
dc.titleLuminescent cyclometalated gold (III) complexes with ancillary N-heterocyclic carbene and alkynyl ligands : from design, synthesis, photophysics to supramolecular assembly and functions-
dc.typePG_Thesis-
dc.identifier.hkulb4775268-
dc.description.thesisnameDoctor of Philosophy-
dc.description.thesislevelDoctoral-
dc.description.thesisdisciplineChemistry-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b4775268-
dc.date.hkucongregation2012-
dc.identifier.mmsid991033465579703414-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats