File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1214/14-AOS1210
- Scopus: eid_2-s2.0-84902489652
- WOS: WOS:000338477800006
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Nonparametric maximum likelihood approach to multiple change-point problems
Title | Nonparametric maximum likelihood approach to multiple change-point problems |
---|---|
Authors | |
Keywords | BIC Change-point estimation Cramér–von Mises statistic Dynamic programming Empirical distribution function Goodness-of-fit test |
Issue Date | 2014 |
Publisher | Institute of Mathematical Statistics. The Journal's web site is located at https://imstat.org/journals-and-publications/annals-of-statistics/ |
Citation | The Annals of Statistics, 2014, v. 42 n. 3, p. 970-1002 How to Cite? |
Abstract | In multiple change-point problems, different data segments often follow different distributions, for which the changes may occur in the mean, scale or the entire distribution from one segment to another. Without the need to know the number of change-points in advance, we propose a nonparametric maximum likelihood approach to detecting multiple change-points. Our method does not impose any parametric assumption on the underlying distributions of the data sequence, which is thus suitable for detection of any changes in the distributions. The number of change-points is determined by the Bayesian information criterion and the locations of the change-points can be estimated via the dynamic programming algorithm and the use of the intrinsic order structure of the likelihood function. Under some mild conditions, we show that the new method provides consistent estimation with an optimal rate. We also suggest a prescreening procedure to exclude most of the irrelevant points prior to the implementation of the nonparametric likelihood method. Simulation studies show that the proposed method has satisfactory performance of identifying multiple change-points in terms of estimation accuracy and computation time. |
Persistent Identifier | http://hdl.handle.net/10722/203431 |
ISSN | 2023 Impact Factor: 3.2 2023 SCImago Journal Rankings: 5.335 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Zou, C | - |
dc.contributor.author | Yin, G | - |
dc.contributor.author | Feng, L | - |
dc.contributor.author | Wang, Z | - |
dc.date.accessioned | 2014-09-19T15:10:28Z | - |
dc.date.available | 2014-09-19T15:10:28Z | - |
dc.date.issued | 2014 | - |
dc.identifier.citation | The Annals of Statistics, 2014, v. 42 n. 3, p. 970-1002 | - |
dc.identifier.issn | 0090-5364 | - |
dc.identifier.uri | http://hdl.handle.net/10722/203431 | - |
dc.description.abstract | In multiple change-point problems, different data segments often follow different distributions, for which the changes may occur in the mean, scale or the entire distribution from one segment to another. Without the need to know the number of change-points in advance, we propose a nonparametric maximum likelihood approach to detecting multiple change-points. Our method does not impose any parametric assumption on the underlying distributions of the data sequence, which is thus suitable for detection of any changes in the distributions. The number of change-points is determined by the Bayesian information criterion and the locations of the change-points can be estimated via the dynamic programming algorithm and the use of the intrinsic order structure of the likelihood function. Under some mild conditions, we show that the new method provides consistent estimation with an optimal rate. We also suggest a prescreening procedure to exclude most of the irrelevant points prior to the implementation of the nonparametric likelihood method. Simulation studies show that the proposed method has satisfactory performance of identifying multiple change-points in terms of estimation accuracy and computation time. | - |
dc.language | eng | - |
dc.publisher | Institute of Mathematical Statistics. The Journal's web site is located at https://imstat.org/journals-and-publications/annals-of-statistics/ | - |
dc.relation.ispartof | The Annals of Statistics | - |
dc.rights | © Institute of Mathematical Statistics, 2014. This article is available online at https://doi.org/10.1214/14-AOS1210 | - |
dc.subject | BIC | - |
dc.subject | Change-point estimation | - |
dc.subject | Cramér–von Mises statistic | - |
dc.subject | Dynamic programming | - |
dc.subject | Empirical distribution function | - |
dc.subject | Goodness-of-fit test | - |
dc.title | Nonparametric maximum likelihood approach to multiple change-point problems | - |
dc.type | Article | - |
dc.identifier.email | Yin, G: gyin@hku.hk | - |
dc.identifier.authority | Yin, G=rp00831 | - |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1214/14-AOS1210 | - |
dc.identifier.scopus | eid_2-s2.0-84902489652 | - |
dc.identifier.hkuros | 239711 | - |
dc.identifier.volume | 42 | - |
dc.identifier.issue | 3 | - |
dc.identifier.spage | 970 | - |
dc.identifier.epage | 1002 | - |
dc.identifier.isi | WOS:000338477800006 | - |
dc.publisher.place | United States | - |
dc.identifier.issnl | 0090-5364 | - |