File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.jspi.2014.05.004
- Scopus: eid_2-s2.0-84904040601
- WOS: WOS:000339703500006
Supplementary
- Citations:
- Appears in Collections:
Article: A bootstrap procedure for local semiparametric density estimation amid model uncertainties
Title | A bootstrap procedure for local semiparametric density estimation amid model uncertainties |
---|---|
Authors | |
Keywords | Bootstrap Kernel density estimator Local parametric fit Maximum likelihood Semiparametric estimation |
Issue Date | 2014 |
Publisher | sciencedirect. The Journal's web site is located at http://www.elsevier.com/locate/jspi |
Citation | Journal of Statistical Planning and Inference, 2014, v. 153, p. 75-86 How to Cite? |
Abstract | We revisit a semiparametric procedure for density estimation based on a convex combination of a nonparametric kernel density estimator and a parametric maximum likelihood estimator, with the mixing weight locally estimated by the bootstrap method. We establish the asymptotic properties of the resulting semiparametric estimator, and show that undersmoothing at the bootstrap step is necessary if the estimator is to attain a convergence rate faster than that of the kernel density estimator under a good local parametric fit. A simulation study is conducted to investigate the finite-sample performance of the procedure. Exploiting its adaptivity to the goodness of local parametric fit, we propose a double bootstrap algorithm to incorporate into the semiparametric procedure more than one parametric family, and illustrate with a numerical example the benefits gained thereof. |
Persistent Identifier | http://hdl.handle.net/10722/200912 |
ISI Accession Number ID |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Soleymani, M | en_US |
dc.contributor.author | Lee, SMS | en_US |
dc.date.accessioned | 2014-08-21T07:07:08Z | - |
dc.date.available | 2014-08-21T07:07:08Z | - |
dc.date.issued | 2014 | en_US |
dc.identifier.citation | Journal of Statistical Planning and Inference, 2014, v. 153, p. 75-86 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/200912 | - |
dc.description.abstract | We revisit a semiparametric procedure for density estimation based on a convex combination of a nonparametric kernel density estimator and a parametric maximum likelihood estimator, with the mixing weight locally estimated by the bootstrap method. We establish the asymptotic properties of the resulting semiparametric estimator, and show that undersmoothing at the bootstrap step is necessary if the estimator is to attain a convergence rate faster than that of the kernel density estimator under a good local parametric fit. A simulation study is conducted to investigate the finite-sample performance of the procedure. Exploiting its adaptivity to the goodness of local parametric fit, we propose a double bootstrap algorithm to incorporate into the semiparametric procedure more than one parametric family, and illustrate with a numerical example the benefits gained thereof. | en_US |
dc.language | eng | en_US |
dc.publisher | sciencedirect. The Journal's web site is located at http://www.elsevier.com/locate/jspi | en_US |
dc.relation.ispartof | Journal of Statistical Planning and Inference | en_US |
dc.subject | Bootstrap | - |
dc.subject | Kernel density estimator | - |
dc.subject | Local parametric fit | - |
dc.subject | Maximum likelihood | - |
dc.subject | Semiparametric estimation | - |
dc.title | A bootstrap procedure for local semiparametric density estimation amid model uncertainties | en_US |
dc.type | Article | en_US |
dc.identifier.email | Soleymani, M: mehdi@hku.hk | en_US |
dc.identifier.email | Lee, SMS: smslee@hku.hk | en_US |
dc.identifier.authority | Lee, SMS=rp00726 | en_US |
dc.identifier.doi | 10.1016/j.jspi.2014.05.004 | en_US |
dc.identifier.scopus | eid_2-s2.0-84904040601 | - |
dc.identifier.hkuros | 231943 | en_US |
dc.identifier.volume | 153 | en_US |
dc.identifier.spage | 75 | en_US |
dc.identifier.epage | 86 | en_US |
dc.identifier.isi | WOS:000339703500006 | - |
dc.publisher.place | NORTH-HOLLAND | en_US |