File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Transforming Growth Factor-β1 (TGF-β1) Regulates Cell Junction Restructuring via Smad-Mediated Repression and Clathrin-Mediated Endocytosis of Nectin-like Molecule 2 (Necl-2)

TitleTransforming Growth Factor-β1 (TGF-β1) Regulates Cell Junction Restructuring via Smad-Mediated Repression and Clathrin-Mediated Endocytosis of Nectin-like Molecule 2 (Necl-2)
Authors
Issue Date2013
PublisherPublic Library of Science. The Journal's web site is located at http://www.plosone.org/home.action
Citation
PLoS One, 2013, v. 8, p. e64316 How to Cite?
AbstractNectin-like molecule-2 (Necl-2), a junction molecule, is exclusively expressed by spermatogenic cells. It mediates homophilic interaction between germ cells and heterophilic interaction between Sertoli and germ cells. Knockout studies have shown that loss of Necl-2 causes male infertility, suggesting Necl-2-based cell adhesion is crucial for spermatogenesis. Transforming growth factor-βs (TGF-βs) are crucial for regulating cell junction restructuring that are required for spermatogenesis. In the present study, we aim to investigate the mechanism on how TGF-β1 regulates Necl-2 expression to achieve timely junction restructuring in the seminiferous epithelium during spermatogenesis. We have demonstrated that TGF-β1 reduces Necl-2 mRNA and protein levels at both transcriptional and post-translational levels. Using inhibitor and clathrin shRNA, we have revealed that TGF-β1 induces Necl-2 protein degradation via clathrin-dependent endocytosis. Endocytosis assays further confirmed that TGF-β1 accelerates the internalization of Necl-2 protein to cytosol. Immunofluorescence staining also revealed that TGF-β1 effectively removes Necl-2 from cell-cell interface. In addition, TGF-β1 reduces Necl-2 mRNA via down-regulating Necl-2 promoter activity. Mutational studies coupled with knockdown experiments have shown that TGF-β1-induced Necl-2 repression requires activation of Smad proteins. EMSA and ChIP assays further confirmed that TGF-β1 promotes the binding of Smad proteins onto MyoD and CCAATa motifs in vitro and in vivo. Taken together, TGF-β1 is a potent cytokine that provides an effective mechanism in controlling Necl-2 expression in the testis via Smad-dependent gene repression and clathrin-mediated endocytosis.
Persistent Identifierhttp://hdl.handle.net/10722/187752
ISSN
2023 Impact Factor: 2.9
2023 SCImago Journal Rankings: 0.839
PubMed Central ID
ISI Accession Number ID

 

DC FieldValueLanguage
dc.contributor.authorGao, Y-
dc.contributor.authorLui, WY-
dc.date.accessioned2013-08-21T07:12:00Z-
dc.date.available2013-08-21T07:12:00Z-
dc.date.issued2013-
dc.identifier.citationPLoS One, 2013, v. 8, p. e64316-
dc.identifier.issn1932-6203-
dc.identifier.urihttp://hdl.handle.net/10722/187752-
dc.description.abstractNectin-like molecule-2 (Necl-2), a junction molecule, is exclusively expressed by spermatogenic cells. It mediates homophilic interaction between germ cells and heterophilic interaction between Sertoli and germ cells. Knockout studies have shown that loss of Necl-2 causes male infertility, suggesting Necl-2-based cell adhesion is crucial for spermatogenesis. Transforming growth factor-βs (TGF-βs) are crucial for regulating cell junction restructuring that are required for spermatogenesis. In the present study, we aim to investigate the mechanism on how TGF-β1 regulates Necl-2 expression to achieve timely junction restructuring in the seminiferous epithelium during spermatogenesis. We have demonstrated that TGF-β1 reduces Necl-2 mRNA and protein levels at both transcriptional and post-translational levels. Using inhibitor and clathrin shRNA, we have revealed that TGF-β1 induces Necl-2 protein degradation via clathrin-dependent endocytosis. Endocytosis assays further confirmed that TGF-β1 accelerates the internalization of Necl-2 protein to cytosol. Immunofluorescence staining also revealed that TGF-β1 effectively removes Necl-2 from cell-cell interface. In addition, TGF-β1 reduces Necl-2 mRNA via down-regulating Necl-2 promoter activity. Mutational studies coupled with knockdown experiments have shown that TGF-β1-induced Necl-2 repression requires activation of Smad proteins. EMSA and ChIP assays further confirmed that TGF-β1 promotes the binding of Smad proteins onto MyoD and CCAATa motifs in vitro and in vivo. Taken together, TGF-β1 is a potent cytokine that provides an effective mechanism in controlling Necl-2 expression in the testis via Smad-dependent gene repression and clathrin-mediated endocytosis.-
dc.languageeng-
dc.publisherPublic Library of Science. The Journal's web site is located at http://www.plosone.org/home.action-
dc.relation.ispartofPLoS ONE-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.titleTransforming Growth Factor-β1 (TGF-β1) Regulates Cell Junction Restructuring via Smad-Mediated Repression and Clathrin-Mediated Endocytosis of Nectin-like Molecule 2 (Necl-2)-
dc.typeArticle-
dc.identifier.emailLui, WY: wylui@hku.hk-
dc.identifier.authorityLui, WY=rp00756-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1371/journal.pone.0064316-
dc.identifier.pmcidPMC3669379-
dc.identifier.scopuseid_2-s2.0-84878553178-
dc.identifier.hkuros220163-
dc.identifier.volume8-
dc.identifier.spagee64316-
dc.identifier.epagee64316-
dc.identifier.isiWOS:000319799900028-
dc.publisher.placeUnited States-
dc.identifier.issnl1932-6203-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats