File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: Fiber optical parametric generation of widely tunable source: continuous-wave to sub-pricosecondregime

TitleFiber optical parametric generation of widely tunable source: continuous-wave to sub-pricosecondregime
Authors
Issue Date2012
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Zhou, Y. [周月]. (2012). Fiber optical parametric generation of widely tunable source : continuous-wave to sub-pricosecond regime. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4961772
AbstractOptical source generation has attracted significant attention recently, especially in fiber optical communications. Today there is a growing a demand for optical source generation beyond conventional telecommunication wavelength bands. However, high quality and versatile optical source is generally not available over those wavelength bands due to the lack of efficient gain medium. Thanks to fiber optical parametric amplifier (FOPA), which is based on the third order nonlinear susceptibility of optical fibers, offers ultrafast response, wide-gain bandwidth, high gain and large frequency detune from the pump, serves as a promising candidate for signal amplification over those wavelength bands. By using the corresponding fiber optical parametric oscillator (FOPO) configuration, widely tunable source from continuous-wave (CW) to sub-picosecond pulses can be potentially generated to serve different applications from communication to biomedical imaging. In this thesis, we first demonstrate an all-fiber widely-tunable picosecond FOPO using highly-nonlinear fiber (HNLF). The tuning range is as wide as 250 nm, which is higher than previous picosecond FOPOs reported in the 1550-nm region. Second, time-dispersion tuning of the FOPO is investigated with fixed pump wavelength. It is a relatively simple and economic approach, and there will be no filter induced cavity loss. We then describe using FOPO to generated nearly-transform limited sub-picosecond pulses with a 60-nm tuning range. Another FOPO with a tuning range of 440-nm with dispersion-shifted fiber (DSF) as the gain medium is proposed and demonstrated. Compared with FOPOs demonstrated using HNLF as the gain medium, the use of DSF offers two key advantages: a wider tuning range and a narrower linewidth. In addition to picosecond FOPO, CW FOPO is also of great interest in fiber optical communications and biomedical imaging. We also demonstrate an all-fiber CW single-longitudinal-mode (SLM) FOPO with tuning range covers the S and L bands. SLM oscillation with a side-mode suppression ratio greater than 43 dB is achieved, which has been extended to 1-μm region under stable operation. Apart from static tuning, dynamic wavelength tuning of the FOPO is also discussed in this thesis with a cumulative speed exceeds 4,000,000 nm/s, which is higher than previous work reported in wavelength-swept FOPOs. The high-speed swept source would be useful in biomedical imaging and sensing applications. The amplification of the sub-picosecond pulses of the FOPO output is also investigated, for the first time to our knowledge, by using a fiber optical parametric chirped pulse amplifier(FOPCPA).The totally fiber-integrated nature of the whole system allows complete self-alignment and further integration to other fiber-based systems. All these research effort will show the versatility of FOPO techniques for generating wide range of optical sources for varies applications. These schemes may be useful in generating CW and short pulse for potential optical communication and biomedical imaging in non-conventional wavelength bands.
DegreeDoctor of Philosophy
SubjectOptical fibers.
Optical parametric oscillators.
Dept/ProgramElectrical and Electronic Engineering
Persistent Identifierhttp://hdl.handle.net/10722/180952
HKU Library Item IDb4961772

 

DC FieldValueLanguage
dc.contributor.authorZhou, Yue-
dc.contributor.author周月-
dc.date.issued2012-
dc.identifier.citationZhou, Y. [周月]. (2012). Fiber optical parametric generation of widely tunable source : continuous-wave to sub-pricosecond regime. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4961772-
dc.identifier.urihttp://hdl.handle.net/10722/180952-
dc.description.abstractOptical source generation has attracted significant attention recently, especially in fiber optical communications. Today there is a growing a demand for optical source generation beyond conventional telecommunication wavelength bands. However, high quality and versatile optical source is generally not available over those wavelength bands due to the lack of efficient gain medium. Thanks to fiber optical parametric amplifier (FOPA), which is based on the third order nonlinear susceptibility of optical fibers, offers ultrafast response, wide-gain bandwidth, high gain and large frequency detune from the pump, serves as a promising candidate for signal amplification over those wavelength bands. By using the corresponding fiber optical parametric oscillator (FOPO) configuration, widely tunable source from continuous-wave (CW) to sub-picosecond pulses can be potentially generated to serve different applications from communication to biomedical imaging. In this thesis, we first demonstrate an all-fiber widely-tunable picosecond FOPO using highly-nonlinear fiber (HNLF). The tuning range is as wide as 250 nm, which is higher than previous picosecond FOPOs reported in the 1550-nm region. Second, time-dispersion tuning of the FOPO is investigated with fixed pump wavelength. It is a relatively simple and economic approach, and there will be no filter induced cavity loss. We then describe using FOPO to generated nearly-transform limited sub-picosecond pulses with a 60-nm tuning range. Another FOPO with a tuning range of 440-nm with dispersion-shifted fiber (DSF) as the gain medium is proposed and demonstrated. Compared with FOPOs demonstrated using HNLF as the gain medium, the use of DSF offers two key advantages: a wider tuning range and a narrower linewidth. In addition to picosecond FOPO, CW FOPO is also of great interest in fiber optical communications and biomedical imaging. We also demonstrate an all-fiber CW single-longitudinal-mode (SLM) FOPO with tuning range covers the S and L bands. SLM oscillation with a side-mode suppression ratio greater than 43 dB is achieved, which has been extended to 1-μm region under stable operation. Apart from static tuning, dynamic wavelength tuning of the FOPO is also discussed in this thesis with a cumulative speed exceeds 4,000,000 nm/s, which is higher than previous work reported in wavelength-swept FOPOs. The high-speed swept source would be useful in biomedical imaging and sensing applications. The amplification of the sub-picosecond pulses of the FOPO output is also investigated, for the first time to our knowledge, by using a fiber optical parametric chirped pulse amplifier(FOPCPA).The totally fiber-integrated nature of the whole system allows complete self-alignment and further integration to other fiber-based systems. All these research effort will show the versatility of FOPO techniques for generating wide range of optical sources for varies applications. These schemes may be useful in generating CW and short pulse for potential optical communication and biomedical imaging in non-conventional wavelength bands.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.source.urihttp://hub.hku.hk/bib/B49617722-
dc.subject.lcshOptical fibers.-
dc.subject.lcshOptical parametric oscillators.-
dc.titleFiber optical parametric generation of widely tunable source: continuous-wave to sub-pricosecondregime-
dc.typePG_Thesis-
dc.identifier.hkulb4961772-
dc.description.thesisnameDoctor of Philosophy-
dc.description.thesislevelDoctoral-
dc.description.thesisdisciplineElectrical and Electronic Engineering-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b4961772-
dc.date.hkucongregation2013-
dc.identifier.mmsid991034139869703414-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats