File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1021/es301758c
- Scopus: eid_2-s2.0-84865467440
- PMID: 22816610
- WOS: WOS:000307697700071
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Leptin-mediated modulation of steroidogenic gene expression in hypoxic zebrafish embryos: Implications for the disruption of sex steroids
Title | Leptin-mediated modulation of steroidogenic gene expression in hypoxic zebrafish embryos: Implications for the disruption of sex steroids |
---|---|
Authors | |
Issue Date | 2012 |
Publisher | American Chemical Society. The Journal's web site is located at http://pubs.acs.org/est |
Citation | Environmental Science And Technology, 2012, v. 46 n. 16, p. 9112-9119 How to Cite? |
Abstract | Hypoxia can impair reproduction of fishes through the disruption of sex steroids. Here, using zebrafish (Danio rerio) embryos, we investigated (i) whether hypoxia can directly affect steroidogenesis independent of pituitary regulation via modulation of steroidogenic gene expression, and (ii) the role of leptin in hypoxia-induced disruption of steroidogenesis. Exposure of fertilized zebrafish embryos to hypoxia (1.0 mg O 2 L -1) from 0-72 h postfertilization (hpf), a developmental window when steroidogenesis is unregulated by pituitary influence, resulted in the up-regulation of cyp11a, cyp17, and 3β-hsd and the down-regulation of cyp19a. Similar gene expression patterns were observed for embryos exposed to 10 mM cobalt chloride (CoCl 2, a chemical inducer of hypoxia-inducible factor 1, HIF-1), suggesting a regulatory role of HIF-1 in steroidogenesis. Testosterone (T) and estradiol (E2) concentrations in hypoxic embryos were greater and lesser, respectively, relative to the normoxic control, thus leading to an increased T/E2 ratio. Expression of the leptin-a gene (zlep-a) was up-regulated upon both hypoxia and CoCl 2 treatments. Functional assays suggested that under hypoxia, elevated zlep-a expression might activate cyp11a and 3β-hsd and inhibit cyp19a. Overall, this study indicates that hypoxia, possibly via HIF-1-induced leptin expression, modulates sex steroid synthesis by acting directly on steroidogenic gene expression. © 2012 American Chemical Society. |
Persistent Identifier | http://hdl.handle.net/10722/179301 |
ISSN | 2023 Impact Factor: 10.8 2023 SCImago Journal Rankings: 3.516 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Yu, RMK | en_US |
dc.contributor.author | Chu, DLH | en_US |
dc.contributor.author | Tan, TF | en_US |
dc.contributor.author | Li, VWT | en_US |
dc.contributor.author | Chan, AKY | en_US |
dc.contributor.author | Giesy, JP | en_US |
dc.contributor.author | Cheng, SH | en_US |
dc.contributor.author | Wu, RSS | en_US |
dc.contributor.author | Kong, RYC | en_US |
dc.date.accessioned | 2012-12-19T09:53:58Z | - |
dc.date.available | 2012-12-19T09:53:58Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.citation | Environmental Science And Technology, 2012, v. 46 n. 16, p. 9112-9119 | en_US |
dc.identifier.issn | 0013-936X | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/179301 | - |
dc.description.abstract | Hypoxia can impair reproduction of fishes through the disruption of sex steroids. Here, using zebrafish (Danio rerio) embryos, we investigated (i) whether hypoxia can directly affect steroidogenesis independent of pituitary regulation via modulation of steroidogenic gene expression, and (ii) the role of leptin in hypoxia-induced disruption of steroidogenesis. Exposure of fertilized zebrafish embryos to hypoxia (1.0 mg O 2 L -1) from 0-72 h postfertilization (hpf), a developmental window when steroidogenesis is unregulated by pituitary influence, resulted in the up-regulation of cyp11a, cyp17, and 3β-hsd and the down-regulation of cyp19a. Similar gene expression patterns were observed for embryos exposed to 10 mM cobalt chloride (CoCl 2, a chemical inducer of hypoxia-inducible factor 1, HIF-1), suggesting a regulatory role of HIF-1 in steroidogenesis. Testosterone (T) and estradiol (E2) concentrations in hypoxic embryos were greater and lesser, respectively, relative to the normoxic control, thus leading to an increased T/E2 ratio. Expression of the leptin-a gene (zlep-a) was up-regulated upon both hypoxia and CoCl 2 treatments. Functional assays suggested that under hypoxia, elevated zlep-a expression might activate cyp11a and 3β-hsd and inhibit cyp19a. Overall, this study indicates that hypoxia, possibly via HIF-1-induced leptin expression, modulates sex steroid synthesis by acting directly on steroidogenic gene expression. © 2012 American Chemical Society. | en_US |
dc.language | eng | en_US |
dc.publisher | American Chemical Society. The Journal's web site is located at http://pubs.acs.org/est | en_US |
dc.relation.ispartof | Environmental Science and Technology | en_US |
dc.title | Leptin-mediated modulation of steroidogenic gene expression in hypoxic zebrafish embryos: Implications for the disruption of sex steroids | en_US |
dc.type | Article | en_US |
dc.identifier.email | Wu, RSS: rudolfwu@hku.hk | en_US |
dc.identifier.authority | Wu, RSS=rp01398 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1021/es301758c | en_US |
dc.identifier.pmid | 22816610 | - |
dc.identifier.scopus | eid_2-s2.0-84865467440 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-84865467440&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 46 | en_US |
dc.identifier.issue | 16 | en_US |
dc.identifier.spage | 9112 | en_US |
dc.identifier.epage | 9119 | en_US |
dc.identifier.isi | WOS:000307697700071 | - |
dc.publisher.place | United States | en_US |
dc.identifier.scopusauthorid | Yu, RMK=9278574900 | en_US |
dc.identifier.scopusauthorid | Chu, DLH=25229992700 | en_US |
dc.identifier.scopusauthorid | Tan, TF=25230516600 | en_US |
dc.identifier.scopusauthorid | Li, VWT=24069083500 | en_US |
dc.identifier.scopusauthorid | Chan, AKY=24278666900 | en_US |
dc.identifier.scopusauthorid | Giesy, JP=35459135300 | en_US |
dc.identifier.scopusauthorid | Cheng, SH=20233852300 | en_US |
dc.identifier.scopusauthorid | Wu, RSS=7402945079 | en_US |
dc.identifier.scopusauthorid | Kong, RYC=7005290687 | en_US |
dc.identifier.issnl | 0013-936X | - |