File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

postgraduate thesis: Rapid diagnosis of isoniazid resistant mycobacterium tuberculosis by hybridization probe based real time PCR

TitleRapid diagnosis of isoniazid resistant mycobacterium tuberculosis by hybridization probe based real time PCR
Authors
Issue Date2012
PublisherThe University of Hong Kong (Pokfulam, Hong Kong)
Citation
Cheng, W. [鄭穎璿]. (2012). Rapid diagnosis of isoniazid resistant mycobacterium tuberculosis by hybridization probe based real time PCR. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4833361
AbstractBackground Tuberculosis (TB) infection is a contagious disease due to infection by Mycobacterium tuberculosis(MTB) causing global health burden. There is increasing effort to develop early case detection methods and also to address the issue of multidrug resistance TB (MDR-TB). Molecular methods have been applied to provide rapid and accurate diagnosis. In addition to commercial kits being available for the detection of MTB from clinical specimens, In-house PCR assays have also been developed for the detection of MTB, and can be adjusted according to the laboratories’ own demand. Several molecular techniques like TaqMan probes and Hybridization probes may be applied to target for markers of MTB, e.g. 16s rRNA and IS6110.Detection of the mutation genes, for example, katGfor isoniazid (INH), enables determination of susceptibility of the antibiotic more rapidly than traditional culture methods, and is especially useful due to the increasing emergence of MDR-TB. A wide range of genes have been reported to be related to the resistance of INH, katG315 mutation is the most common gene among them. Therefore, genotyping katG315 allows determination of the susceptibility of INH. Objective The first objective is to evaluate the diagnostic performance of IS6110 One-tube Nested Real-Time PCR for the detection of MTB. Clinical pulmonary specimens collected from Tuen Mun Hospital were retrieved for investigation. All the specimens have already been tested for COBAS TaqMan MTB test and culture results have been obtained for all the samples. During the first stage of the study, all the specimens were tested with IS6110 One-tube Nested Real-Time PCR. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic odds ratio were obtained from the comparison with the gold standard of MTB detection, i.e., culture. During the second stage of the study, samples were selected to undergo katG315 HybProbe Real-Time PCR assay to determine the genotype of katG. The performance of the assay was evaluated statistically. Result In the first stage of the study, 200 samples were tested with IS6110 One-tube Nested Real-Time PCR. The assay was found to have a sensitivity of 76.92%, specificity of 98.52%, positive predictive value of 96.15%, negative predictive value of 89.86% and the diagnostic odds ratio of 221.667. In the second stage of the study, 66 samples were selected and tested for katG315 HybProbe Real-Time PCR assay, 36 samples were successfully genotyped while 30 samples failed to be genotyped. The only culture proven INH resistance specimen was not amplified at first, and culture isolate was extracted for genotyping again. The repeated test confirmed the genotype of the resistance strain to be a mutant. Conclusion katG315 HybProbe Real-Time PCR assay is a valid approach for genotyping katG. However, the sensitivity and efficiency has to be improved before application for clinical use. From the statistics obtained, COBAS TaqMan PCR assay, which is routinely used in Tuen Mun Hospital, is statistically proven to have comparatively better performance than the IS6110 One-tube Nested Real-Time PCR. Improvement on the assay is required for IS6110 One-tube Nested Real-Time PCR. However, there is great potential of applying both IS6110 One-tube Nested Real-Time PCR and katG315 HybProbe Real-Time PCR assay in clinical use with the same platform available.
DegreeMaster of Medical Sciences
SubjectMycobacterium tuberculosis - Molecular diagnosis.
Dept/ProgramMicrobiology
Persistent Identifierhttp://hdl.handle.net/10722/173941
HKU Library Item IDb4833361

 

DC FieldValueLanguage
dc.contributor.authorCheng, Wing-suen.-
dc.contributor.author鄭穎璿.-
dc.date.issued2012-
dc.identifier.citationCheng, W. [鄭穎璿]. (2012). Rapid diagnosis of isoniazid resistant mycobacterium tuberculosis by hybridization probe based real time PCR. (Thesis). University of Hong Kong, Pokfulam, Hong Kong SAR. Retrieved from http://dx.doi.org/10.5353/th_b4833361-
dc.identifier.urihttp://hdl.handle.net/10722/173941-
dc.description.abstractBackground Tuberculosis (TB) infection is a contagious disease due to infection by Mycobacterium tuberculosis(MTB) causing global health burden. There is increasing effort to develop early case detection methods and also to address the issue of multidrug resistance TB (MDR-TB). Molecular methods have been applied to provide rapid and accurate diagnosis. In addition to commercial kits being available for the detection of MTB from clinical specimens, In-house PCR assays have also been developed for the detection of MTB, and can be adjusted according to the laboratories’ own demand. Several molecular techniques like TaqMan probes and Hybridization probes may be applied to target for markers of MTB, e.g. 16s rRNA and IS6110.Detection of the mutation genes, for example, katGfor isoniazid (INH), enables determination of susceptibility of the antibiotic more rapidly than traditional culture methods, and is especially useful due to the increasing emergence of MDR-TB. A wide range of genes have been reported to be related to the resistance of INH, katG315 mutation is the most common gene among them. Therefore, genotyping katG315 allows determination of the susceptibility of INH. Objective The first objective is to evaluate the diagnostic performance of IS6110 One-tube Nested Real-Time PCR for the detection of MTB. Clinical pulmonary specimens collected from Tuen Mun Hospital were retrieved for investigation. All the specimens have already been tested for COBAS TaqMan MTB test and culture results have been obtained for all the samples. During the first stage of the study, all the specimens were tested with IS6110 One-tube Nested Real-Time PCR. Sensitivity, specificity, positive predictive value, negative predictive value and diagnostic odds ratio were obtained from the comparison with the gold standard of MTB detection, i.e., culture. During the second stage of the study, samples were selected to undergo katG315 HybProbe Real-Time PCR assay to determine the genotype of katG. The performance of the assay was evaluated statistically. Result In the first stage of the study, 200 samples were tested with IS6110 One-tube Nested Real-Time PCR. The assay was found to have a sensitivity of 76.92%, specificity of 98.52%, positive predictive value of 96.15%, negative predictive value of 89.86% and the diagnostic odds ratio of 221.667. In the second stage of the study, 66 samples were selected and tested for katG315 HybProbe Real-Time PCR assay, 36 samples were successfully genotyped while 30 samples failed to be genotyped. The only culture proven INH resistance specimen was not amplified at first, and culture isolate was extracted for genotyping again. The repeated test confirmed the genotype of the resistance strain to be a mutant. Conclusion katG315 HybProbe Real-Time PCR assay is a valid approach for genotyping katG. However, the sensitivity and efficiency has to be improved before application for clinical use. From the statistics obtained, COBAS TaqMan PCR assay, which is routinely used in Tuen Mun Hospital, is statistically proven to have comparatively better performance than the IS6110 One-tube Nested Real-Time PCR. Improvement on the assay is required for IS6110 One-tube Nested Real-Time PCR. However, there is great potential of applying both IS6110 One-tube Nested Real-Time PCR and katG315 HybProbe Real-Time PCR assay in clinical use with the same platform available.-
dc.languageeng-
dc.publisherThe University of Hong Kong (Pokfulam, Hong Kong)-
dc.relation.ispartofHKU Theses Online (HKUTO)-
dc.rightsThe author retains all proprietary rights, (such as patent rights) and the right to use in future works.-
dc.rightsThis work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.-
dc.source.urihttp://hub.hku.hk/bib/B4833361X-
dc.subject.lcshMycobacterium tuberculosis - Molecular diagnosis.-
dc.titleRapid diagnosis of isoniazid resistant mycobacterium tuberculosis by hybridization probe based real time PCR-
dc.typePG_Thesis-
dc.identifier.hkulb4833361-
dc.description.thesisnameMaster of Medical Sciences-
dc.description.thesislevelMaster-
dc.description.thesisdisciplineMicrobiology-
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.5353/th_b4833361-
dc.date.hkucongregation2012-
dc.identifier.mmsid991033833199703414-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats