File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.csda.2011.01.006
- Scopus: eid_2-s2.0-84862008026
- WOS: WOS:000309785500003
- Find via
Supplementary
-
Bookmarks:
- CiteULike: 1
- Citations:
- Appears in Collections:
Article: A Bayesian conditional autoregressive geometric process model for range data
Title | A Bayesian conditional autoregressive geometric process model for range data |
---|---|
Authors | |
Keywords | Bayesian Analysis Carr Model Geometric Process Range Data Winbugs |
Issue Date | 2012 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/csda |
Citation | Computational Statistics And Data Analysis, 2012, v. 56 n. 11, p. 3006-3019 How to Cite? |
Abstract | Extreme value theories indicate that the range is an efficient estimator of local volatility in financial time series. A geometric process (GP) framework that incorporates the conditional autoregressive range (CARR)-type mean function is presented for range data. The proposed model, called the conditional autoregressive geometric process range (CARGPR) model, allows for flexible trend patterns, threshold effects, leverage effects, and long-memory dynamics in financial time series. For robustness considerations, a log-t distribution is adopted. Model implementation can be easily done using the WinBUGS package. A simulation study shows that model parameters are estimated with high accuracy. In the empirical study on the range data of an Australian stock market index, the CARGPR model outperforms the CARR model in both in-sample estimation and out-of-sample forecast. © 2010 Elsevier B.V. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/172498 |
ISSN | 2023 Impact Factor: 1.5 2023 SCImago Journal Rankings: 1.008 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Chan, JSK | en_US |
dc.contributor.author | Lam, CPY | en_US |
dc.contributor.author | Yu, PLH | en_US |
dc.contributor.author | Choy, STB | en_US |
dc.contributor.author | Chen, CWS | en_US |
dc.date.accessioned | 2012-10-30T06:22:48Z | - |
dc.date.available | 2012-10-30T06:22:48Z | - |
dc.date.issued | 2012 | en_US |
dc.identifier.citation | Computational Statistics And Data Analysis, 2012, v. 56 n. 11, p. 3006-3019 | en_US |
dc.identifier.issn | 0167-9473 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/172498 | - |
dc.description.abstract | Extreme value theories indicate that the range is an efficient estimator of local volatility in financial time series. A geometric process (GP) framework that incorporates the conditional autoregressive range (CARR)-type mean function is presented for range data. The proposed model, called the conditional autoregressive geometric process range (CARGPR) model, allows for flexible trend patterns, threshold effects, leverage effects, and long-memory dynamics in financial time series. For robustness considerations, a log-t distribution is adopted. Model implementation can be easily done using the WinBUGS package. A simulation study shows that model parameters are estimated with high accuracy. In the empirical study on the range data of an Australian stock market index, the CARGPR model outperforms the CARR model in both in-sample estimation and out-of-sample forecast. © 2010 Elsevier B.V. All rights reserved. | en_US |
dc.language | eng | en_US |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/csda | en_US |
dc.relation.ispartof | Computational Statistics and Data Analysis | en_US |
dc.subject | Bayesian Analysis | en_US |
dc.subject | Carr Model | en_US |
dc.subject | Geometric Process | en_US |
dc.subject | Range Data | en_US |
dc.subject | Winbugs | en_US |
dc.title | A Bayesian conditional autoregressive geometric process model for range data | en_US |
dc.type | Article | en_US |
dc.identifier.email | Yu, PLH: plhyu@hkucc.hku.hk | en_US |
dc.identifier.authority | Yu, PLH=rp00835 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1016/j.csda.2011.01.006 | en_US |
dc.identifier.scopus | eid_2-s2.0-84862008026 | en_US |
dc.identifier.hkuros | 210598 | - |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-84862008026&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 56 | en_US |
dc.identifier.issue | 11 | en_US |
dc.identifier.spage | 3006 | en_US |
dc.identifier.epage | 3019 | en_US |
dc.identifier.isi | WOS:000309785500003 | - |
dc.publisher.place | Netherlands | en_US |
dc.identifier.scopusauthorid | Chan, JSK=24467617500 | en_US |
dc.identifier.scopusauthorid | Lam, CPY=36970929300 | en_US |
dc.identifier.scopusauthorid | Yu, PLH=7403599794 | en_US |
dc.identifier.scopusauthorid | Choy, STB=7004160354 | en_US |
dc.identifier.scopusauthorid | Chen, CWS=36067962500 | en_US |
dc.identifier.citeulike | 8766358 | - |
dc.identifier.issnl | 0167-9473 | - |