File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Diffusion MRI registration using orientation distribution functions

TitleDiffusion MRI registration using orientation distribution functions
Authors
Issue Date2009
PublisherSpringer Verlag. The Journal's web site is located at http://springerlink.com/content/105633/
Citation
The 21st International Conference on Information Processing in Medical Imaging (IPMI 2009), Williamsburg, VA., 5-10 July 2009. In Lecture Notes In Computer Science, 2009, v. 5636, p. 626-637 How to Cite?
AbstractWe propose a linear-elastic registration method to register diffusion-weighted MRI (DW-MRI) data sets by mapping their diffusion orientation distribution functions (ODFs). The ODFs were reconstructed using a q-ball imaging (QBI) technique to resolve intravoxel fiber crossing. The registration method is based on mapping the ODF maps represented by spherical harmonics which yield analytic solutions and reduce the computational complexity. ODF reorientation is required to maintain the consistency with transformed local fiber directions. The reorientation matrices are extracted from the local Jacobian and directly applied to the coefficients of spherical harmonics. The similarity cost of the registration is defined by the ODF shape distance calculated from the spherical harmonic coefficients. The transformation fields are regularized by linear elastic constraints. The proposed method was validated using both synthetic and real data sets. Experimental results show that the elastic registration improved the affine alignment by further reducing the ODF shape difference; reorientation during the registration produced registered ODF maps with more consistent principle directions compared to registrations without reorientation or simultaneous reorientation. © 2009 Springer Berlin Heidelberg.
Persistent Identifierhttp://hdl.handle.net/10722/169884
ISSN
2020 SCImago Journal Rankings: 0.249
References

 

DC FieldValueLanguage
dc.contributor.authorGeng, Xen_HK
dc.contributor.authorRoss, TJen_HK
dc.contributor.authorZhan, Wen_HK
dc.contributor.authorGu, Hen_HK
dc.contributor.authorChao, YPen_HK
dc.contributor.authorLin, CPen_HK
dc.contributor.authorChristensen, GEen_HK
dc.contributor.authorSchuff, Nen_HK
dc.contributor.authorYang, Yen_HK
dc.date.accessioned2012-10-25T04:57:49Z-
dc.date.available2012-10-25T04:57:49Z-
dc.date.issued2009en_HK
dc.identifier.citationThe 21st International Conference on Information Processing in Medical Imaging (IPMI 2009), Williamsburg, VA., 5-10 July 2009. In Lecture Notes In Computer Science, 2009, v. 5636, p. 626-637en_US
dc.identifier.issn0302-9743en_HK
dc.identifier.urihttp://hdl.handle.net/10722/169884-
dc.description.abstractWe propose a linear-elastic registration method to register diffusion-weighted MRI (DW-MRI) data sets by mapping their diffusion orientation distribution functions (ODFs). The ODFs were reconstructed using a q-ball imaging (QBI) technique to resolve intravoxel fiber crossing. The registration method is based on mapping the ODF maps represented by spherical harmonics which yield analytic solutions and reduce the computational complexity. ODF reorientation is required to maintain the consistency with transformed local fiber directions. The reorientation matrices are extracted from the local Jacobian and directly applied to the coefficients of spherical harmonics. The similarity cost of the registration is defined by the ODF shape distance calculated from the spherical harmonic coefficients. The transformation fields are regularized by linear elastic constraints. The proposed method was validated using both synthetic and real data sets. Experimental results show that the elastic registration improved the affine alignment by further reducing the ODF shape difference; reorientation during the registration produced registered ODF maps with more consistent principle directions compared to registrations without reorientation or simultaneous reorientation. © 2009 Springer Berlin Heidelberg.en_HK
dc.languageengen_US
dc.publisherSpringer Verlag. The Journal's web site is located at http://springerlink.com/content/105633/en_HK
dc.relation.ispartofLecture Notes in Computer Scienceen_HK
dc.titleDiffusion MRI registration using orientation distribution functionsen_HK
dc.typeConference_Paperen_HK
dc.identifier.emailGeng, X: gengx@hku.hken_HK
dc.identifier.authorityGeng, X=rp01678en_HK
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1007/978-3-642-02498-6_52en_HK
dc.identifier.scopuseid_2-s2.0-70349313283en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-70349139289&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume5636en_HK
dc.identifier.spage626en_HK
dc.identifier.epage637en_HK
dc.publisher.placeGermanyen_HK
dc.identifier.scopusauthoridGeng, X=34771310000en_HK
dc.identifier.scopusauthoridRoss, TJ=7203043487en_HK
dc.identifier.scopusauthoridZhan, W=7102238668en_HK
dc.identifier.scopusauthoridGu, H=35233258000en_HK
dc.identifier.scopusauthoridChao, YP=15843250800en_HK
dc.identifier.scopusauthoridLin, CP=35242710800en_HK
dc.identifier.scopusauthoridChristensen, GE=7202944649en_HK
dc.identifier.scopusauthoridSchuff, N=7005417661en_HK
dc.identifier.scopusauthoridYang, Y=35294154700en_HK
dc.customcontrol.immutablesml 160531 amended-
dc.identifier.issnl0302-9743-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats