File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: A robust adaptive backstepping scheme for nonlinear systems with unmodeled dynamics

TitleA robust adaptive backstepping scheme for nonlinear systems with unmodeled dynamics
Authors
KeywordsAdaptive Nonlinear Control
Backstepping
Dynamic Uncertainty
Lagrange Stability
Issue Date1999
Citation
Ieee Transactions On Automatic Control, 1999, v. 44 n. 9, p. 1705-1711 How to Cite?
AbstractThis paper presents a constructive robust adaptive non-linear control scheme which can be regarded as a robustification of the now popular adaptive backstepping algorithm. The allowed class of uncertainties includes nonlinearly appearing parametric uncertainty, uncertain nonlinearities, and unmeasured input-to-state stable dynamics In contrast to [5]-[7], the adaptive control laws proposed in this paper do not require any dynamic dominating signal to guarantee the robustness property of Lagrange stability. The numerical example of a simple pendulum with unknown parameters and without velocity measurement illustrates our theoretical results.
Persistent Identifierhttp://hdl.handle.net/10722/169666
ISSN
2023 Impact Factor: 6.2
2023 SCImago Journal Rankings: 4.501
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorJiang, ZPen_US
dc.contributor.authorHill, DJen_US
dc.date.accessioned2012-10-25T04:54:05Z-
dc.date.available2012-10-25T04:54:05Z-
dc.date.issued1999en_US
dc.identifier.citationIeee Transactions On Automatic Control, 1999, v. 44 n. 9, p. 1705-1711en_US
dc.identifier.issn0018-9286en_US
dc.identifier.urihttp://hdl.handle.net/10722/169666-
dc.description.abstractThis paper presents a constructive robust adaptive non-linear control scheme which can be regarded as a robustification of the now popular adaptive backstepping algorithm. The allowed class of uncertainties includes nonlinearly appearing parametric uncertainty, uncertain nonlinearities, and unmeasured input-to-state stable dynamics In contrast to [5]-[7], the adaptive control laws proposed in this paper do not require any dynamic dominating signal to guarantee the robustness property of Lagrange stability. The numerical example of a simple pendulum with unknown parameters and without velocity measurement illustrates our theoretical results.en_US
dc.languageengen_US
dc.relation.ispartofIEEE Transactions on Automatic Controlen_US
dc.subjectAdaptive Nonlinear Controlen_US
dc.subjectBacksteppingen_US
dc.subjectDynamic Uncertaintyen_US
dc.subjectLagrange Stabilityen_US
dc.titleA robust adaptive backstepping scheme for nonlinear systems with unmodeled dynamicsen_US
dc.typeArticleen_US
dc.identifier.emailHill, DJ:en_US
dc.identifier.authorityHill, DJ=rp01669en_US
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1109/9.788536en_US
dc.identifier.scopuseid_2-s2.0-0032594190en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-0032594190&selection=ref&src=s&origin=recordpageen_US
dc.identifier.volume44en_US
dc.identifier.issue9en_US
dc.identifier.spage1705en_US
dc.identifier.epage1711en_US
dc.identifier.isiWOS:000082501400006-
dc.publisher.placeUnited Statesen_US
dc.identifier.scopusauthoridJiang, ZP=7404279463en_US
dc.identifier.scopusauthoridHill, DJ=35398599500en_US
dc.identifier.issnl0018-9286-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats