File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.chaos.2006.06.036
- Scopus: eid_2-s2.0-35348903090
- WOS: WOS:000252504100015
- Find via

Supplementary
- Citations:
- Appears in Collections:
Article: The discrete modified Korteweg-de Vries equation with non-vanishing boundary conditions: Interactions of solitons
| Title | The discrete modified Korteweg-de Vries equation with non-vanishing boundary conditions: Interactions of solitons |
|---|---|
| Authors | |
| Issue Date | 2008 |
| Publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/chaos |
| Citation | Chaos, Solitons And Fractals, 2008, v. 36 n. 2, p. 296-302 How to Cite? |
| Abstract | The discrete modified Korteweg-de Vries equation with negative cubic nonlinearity is considered for non-vanishing boundary condition in the far field. A Hirota bilinear form is established and expressions for 1- and 2-soliton are calculated. The amplitude of the soliton cannot exceed a maximum, and further increasing the wave number will just result in a solitary wave of larger width. This special class of solitary waves is termed 'plateau' solitons here. The interaction of a soliton of less than the maximum amplitude with such a 'plateau' soliton will result in a reversal of polarity of the smaller soliton during the interaction process. © 2006 Elsevier Ltd. All rights reserved. |
| Persistent Identifier | http://hdl.handle.net/10722/156922 |
| ISSN | 2023 Impact Factor: 5.3 2023 SCImago Journal Rankings: 1.349 |
| ISI Accession Number ID | |
| References |
| DC Field | Value | Language |
|---|---|---|
| dc.contributor.author | Shek, ECM | en_US |
| dc.contributor.author | Chow, KW | en_US |
| dc.date.accessioned | 2012-08-08T08:44:33Z | - |
| dc.date.available | 2012-08-08T08:44:33Z | - |
| dc.date.issued | 2008 | en_US |
| dc.identifier.citation | Chaos, Solitons And Fractals, 2008, v. 36 n. 2, p. 296-302 | en_US |
| dc.identifier.issn | 0960-0779 | en_US |
| dc.identifier.uri | http://hdl.handle.net/10722/156922 | - |
| dc.description.abstract | The discrete modified Korteweg-de Vries equation with negative cubic nonlinearity is considered for non-vanishing boundary condition in the far field. A Hirota bilinear form is established and expressions for 1- and 2-soliton are calculated. The amplitude of the soliton cannot exceed a maximum, and further increasing the wave number will just result in a solitary wave of larger width. This special class of solitary waves is termed 'plateau' solitons here. The interaction of a soliton of less than the maximum amplitude with such a 'plateau' soliton will result in a reversal of polarity of the smaller soliton during the interaction process. © 2006 Elsevier Ltd. All rights reserved. | en_US |
| dc.language | eng | en_US |
| dc.publisher | Pergamon. The Journal's web site is located at http://www.elsevier.com/locate/chaos | en_US |
| dc.relation.ispartof | Chaos, Solitons and Fractals | en_US |
| dc.title | The discrete modified Korteweg-de Vries equation with non-vanishing boundary conditions: Interactions of solitons | en_US |
| dc.type | Article | en_US |
| dc.identifier.email | Chow, KW:kwchow@hku.hk | en_US |
| dc.identifier.authority | Chow, KW=rp00112 | en_US |
| dc.description.nature | link_to_subscribed_fulltext | en_US |
| dc.identifier.doi | 10.1016/j.chaos.2006.06.036 | en_US |
| dc.identifier.scopus | eid_2-s2.0-35348903090 | en_US |
| dc.identifier.hkuros | 143435 | - |
| dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-35348903090&selection=ref&src=s&origin=recordpage | en_US |
| dc.identifier.volume | 36 | en_US |
| dc.identifier.issue | 2 | en_US |
| dc.identifier.spage | 296 | en_US |
| dc.identifier.epage | 302 | en_US |
| dc.identifier.isi | WOS:000252504100015 | - |
| dc.publisher.place | United Kingdom | en_US |
| dc.identifier.scopusauthorid | Shek, ECM=22836153600 | en_US |
| dc.identifier.scopusauthorid | Chow, KW=13605209900 | en_US |
| dc.identifier.issnl | 0960-0779 | - |
