File Download
There are no files associated with this item.
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1016/j.physleta.2004.03.038
- Scopus: eid_2-s2.0-1942443174
- WOS: WOS:000221210600006
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Global robust exponential stability analysis for interval recurrent neural networks
Title | Global robust exponential stability analysis for interval recurrent neural networks |
---|---|
Authors | |
Keywords | Global Exponential Stability Interval Systems Linear Matrix Inequality Recurrent Neural Networks |
Issue Date | 2004 |
Publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/physleta |
Citation | Physics Letters, Section A: General, Atomic And Solid State Physics, 2004, v. 325 n. 2, p. 124-133 How to Cite? |
Abstract | This Letter investigates the problem of robust global exponential stability analysis for interval recurrent neural networks (RNNs) via the linear matrix inequality (LMI) approach. The values of the time-invariant uncertain parameters are assumed to be bounded within given compact sets. An improved condition for the existence of a unique equilibrium point and its global exponential stability of RNNs with known parameters is proposed. Based on this, a sufficient condition for the global robust exponential stability for interval RNNs is obtained. Both of the conditions are expressed in terms of LMIs, which can be checked easily by various recently developed convex optimization algorithms. Examples are provided to demonstrate the reduced conservatism of the proposed exponential stability condition. © 2004 Elsevier B.V. All rights reserved. |
Persistent Identifier | http://hdl.handle.net/10722/156763 |
ISSN | 2023 Impact Factor: 2.3 2023 SCImago Journal Rankings: 0.483 |
ISI Accession Number ID | |
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Xu, S | en_US |
dc.contributor.author | Lam, J | en_US |
dc.contributor.author | Ho, DWC | en_US |
dc.contributor.author | Zou, Y | en_US |
dc.date.accessioned | 2012-08-08T08:43:52Z | - |
dc.date.available | 2012-08-08T08:43:52Z | - |
dc.date.issued | 2004 | en_US |
dc.identifier.citation | Physics Letters, Section A: General, Atomic And Solid State Physics, 2004, v. 325 n. 2, p. 124-133 | en_US |
dc.identifier.issn | 0375-9601 | en_US |
dc.identifier.uri | http://hdl.handle.net/10722/156763 | - |
dc.description.abstract | This Letter investigates the problem of robust global exponential stability analysis for interval recurrent neural networks (RNNs) via the linear matrix inequality (LMI) approach. The values of the time-invariant uncertain parameters are assumed to be bounded within given compact sets. An improved condition for the existence of a unique equilibrium point and its global exponential stability of RNNs with known parameters is proposed. Based on this, a sufficient condition for the global robust exponential stability for interval RNNs is obtained. Both of the conditions are expressed in terms of LMIs, which can be checked easily by various recently developed convex optimization algorithms. Examples are provided to demonstrate the reduced conservatism of the proposed exponential stability condition. © 2004 Elsevier B.V. All rights reserved. | en_US |
dc.language | eng | en_US |
dc.publisher | Elsevier BV. The Journal's web site is located at http://www.elsevier.com/locate/physleta | en_US |
dc.relation.ispartof | Physics Letters, Section A: General, Atomic and Solid State Physics | en_US |
dc.subject | Global Exponential Stability | en_US |
dc.subject | Interval Systems | en_US |
dc.subject | Linear Matrix Inequality | en_US |
dc.subject | Recurrent Neural Networks | en_US |
dc.title | Global robust exponential stability analysis for interval recurrent neural networks | en_US |
dc.type | Article | en_US |
dc.identifier.email | Lam, J:james.lam@hku.hk | en_US |
dc.identifier.authority | Lam, J=rp00133 | en_US |
dc.description.nature | link_to_subscribed_fulltext | en_US |
dc.identifier.doi | 10.1016/j.physleta.2004.03.038 | en_US |
dc.identifier.scopus | eid_2-s2.0-1942443174 | en_US |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-1942443174&selection=ref&src=s&origin=recordpage | en_US |
dc.identifier.volume | 325 | en_US |
dc.identifier.issue | 2 | en_US |
dc.identifier.spage | 124 | en_US |
dc.identifier.epage | 133 | en_US |
dc.identifier.isi | WOS:000221210600006 | - |
dc.publisher.place | Netherlands | en_US |
dc.identifier.scopusauthorid | Xu, S=7404438591 | en_US |
dc.identifier.scopusauthorid | Lam, J=7201973414 | en_US |
dc.identifier.scopusauthorid | Ho, DWC=7402971938 | en_US |
dc.identifier.scopusauthorid | Zou, Y=7402166773 | en_US |
dc.identifier.issnl | 0375-9601 | - |