File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: An improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage

TitleAn improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storage
Authors
KeywordsMicroencapsulation
Palm oil
Poly-L-lysine
Probiotics
Issue Date2009
PublisherWiley-Blackwell Publishing, Inc. The Journal's web site is located at http://www.wiley.com/bw/journal.asp?ref=0022-1147
Citation
Journal Of Food Science, 2009, v. 74 n. 2, p. M53-M61 How to Cite?
AbstractThe purpose of this study was to develop a method for applying an extra coating of palm oil and poly-L-lysine (POPL) to alginate (ALG) microcapsules to enhance the survival of probiotic bacteria. Eight strains of probiotic bacteria including Lactobacillus rhamnosus, Bifidobacterium longum, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, B. lactis type Bl-O4, and B. lactis type Bi-07 were encapsulated using alginate alone or alginate with POPL. Electron microscopy was used to measure the size of the microcapsules and to determine their surface texture. To assess if the addition of POPL improved the viability of probiotic bacteria in acidic conditions, both ALG and POPL microcapsules were inoculated into pH 2.0 MRS broths and their viability was assessed over a 2-h incubation period. Two bile salts including oxgall bile salt and taurocholic acid were used to test the bile tolerance of probiotic bacteria entrapped in ALG and POPL microcapsules. To assess the porosity and the ability of the microcapsule to hold small molecules in an aqueous environment a water-soluble fluorescent dye, 6-carboxyflourescin (6 FAM), was encapsulated and its release was monitored using a UV spectrophotometer. The results indicated that coating the microcapsules with POPL increased the overall size of the capsules by an average of 3 μm ± 0.67. However, microcapsules with added POPL had a much smoother surface texture when examined under an electron microscope. The results also indicated that the addition of POPL to microcapsules improved the average viability of probiotic bacteria by > 1 log CFU/mL when compared to ALG microcapsules at 2 h of exposure to acidic conditions. However, similar plate counts were observed between ALG and POPL microcapsules when exposed to bile salts. This suggests that an extra coating of POPL could be readily broken down by bile salts that are commonly found in the lower gastrointestinal tract (GIT). Upon testing the porosity of the microcapsules, findings suggest that POPL microcapsules were less porous and hold 52.2% more fluorescent dye over a 6-wk storage period. © 2008 Institute of Food Technologists®.
Persistent Identifierhttp://hdl.handle.net/10722/144383
ISSN
2023 Impact Factor: 3.2
2023 SCImago Journal Rankings: 0.783
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorDing, WKen_HK
dc.contributor.authorShah, NPen_HK
dc.date.accessioned2012-01-20T09:01:45Z-
dc.date.available2012-01-20T09:01:45Z-
dc.date.issued2009en_HK
dc.identifier.citationJournal Of Food Science, 2009, v. 74 n. 2, p. M53-M61en_HK
dc.identifier.issn0022-1147en_HK
dc.identifier.urihttp://hdl.handle.net/10722/144383-
dc.description.abstractThe purpose of this study was to develop a method for applying an extra coating of palm oil and poly-L-lysine (POPL) to alginate (ALG) microcapsules to enhance the survival of probiotic bacteria. Eight strains of probiotic bacteria including Lactobacillus rhamnosus, Bifidobacterium longum, L. salivarius, L. plantarum, L. acidophilus, L. paracasei, B. lactis type Bl-O4, and B. lactis type Bi-07 were encapsulated using alginate alone or alginate with POPL. Electron microscopy was used to measure the size of the microcapsules and to determine their surface texture. To assess if the addition of POPL improved the viability of probiotic bacteria in acidic conditions, both ALG and POPL microcapsules were inoculated into pH 2.0 MRS broths and their viability was assessed over a 2-h incubation period. Two bile salts including oxgall bile salt and taurocholic acid were used to test the bile tolerance of probiotic bacteria entrapped in ALG and POPL microcapsules. To assess the porosity and the ability of the microcapsule to hold small molecules in an aqueous environment a water-soluble fluorescent dye, 6-carboxyflourescin (6 FAM), was encapsulated and its release was monitored using a UV spectrophotometer. The results indicated that coating the microcapsules with POPL increased the overall size of the capsules by an average of 3 μm ± 0.67. However, microcapsules with added POPL had a much smoother surface texture when examined under an electron microscope. The results also indicated that the addition of POPL to microcapsules improved the average viability of probiotic bacteria by > 1 log CFU/mL when compared to ALG microcapsules at 2 h of exposure to acidic conditions. However, similar plate counts were observed between ALG and POPL microcapsules when exposed to bile salts. This suggests that an extra coating of POPL could be readily broken down by bile salts that are commonly found in the lower gastrointestinal tract (GIT). Upon testing the porosity of the microcapsules, findings suggest that POPL microcapsules were less porous and hold 52.2% more fluorescent dye over a 6-wk storage period. © 2008 Institute of Food Technologists®.en_HK
dc.languageengen_US
dc.publisherWiley-Blackwell Publishing, Inc. The Journal's web site is located at http://www.wiley.com/bw/journal.asp?ref=0022-1147en_HK
dc.relation.ispartofJournal of Food Scienceen_HK
dc.subjectMicroencapsulationen_HK
dc.subjectPalm oilen_HK
dc.subjectPoly-L-lysineen_HK
dc.subjectProbioticsen_HK
dc.titleAn improved method of microencapsulation of probiotic bacteria for their stability in acidic and bile conditions during storageen_HK
dc.typeArticleen_HK
dc.identifier.emailShah, NP: npshah@hku.hken_HK
dc.identifier.authorityShah, NP=rp01571en_HK
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1111/j.1750-3841.2008.01030.xen_HK
dc.identifier.pmid19323758-
dc.identifier.scopuseid_2-s2.0-62549136085en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-62549136085&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume74en_HK
dc.identifier.issue2en_HK
dc.identifier.spageM53en_HK
dc.identifier.epageM61en_HK
dc.identifier.isiWOS:000264272500037-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridDing, WK=23008085200en_HK
dc.identifier.scopusauthoridShah, NP=7401823907en_HK
dc.identifier.issnl0022-1147-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats