File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Conference Paper: Subspace gradient domain mesh deformation

TitleSubspace gradient domain mesh deformation
Authors
KeywordsNonlinear constraints
Projection constraint
Skeletal control
Volume preservation
Issue Date2006
PublisherAssociation for Computing Machinery, Inc..
Citation
ACM SIGGRAPH 2006 (SIGGRAPH '06), Boston, MA., 30 July-3 August 2006. In ACM Transactions on Graphics, 2006, v. 25 n. 3, p. 1126-1134 How to Cite?
AbstractIn this paper we present a general framework for performing constrained mesh deformation tasks with gradient domain techniques. We present a gradient domain technique that works well with a wide variety of linear and nonlinear constraints. The constraints we introduce include the nonlinear volume constraint for volume preservation, the nonlinear skeleton constraint for maintaining the rigidity of limb segments of articulated figures, and the projection constraint for easy manipulation of the mesh without having to frequently switch between multiple viewpoints. To handle nonlinear constraints, we cast mesh deformation as a nonlinear energy minimization problem and solve the problem using an iterative algorithm. The main challenges in solving this nonlinear problem are the slow convergence and numerical instability of the iterative solver. To address these issues, we develop a subspace technique that builds a coarse control mesh around the original mesh and projects the deformation energy and constraints onto the control mesh vertices using the mean value interpolation. The energy minimization is then carried out in the subspace formed by the control mesh vertices. Running in this subspace, our energy minimization solver is both fast and stable and it provides interactive responses. We demonstrate our deformation constraints and subspace deformation technique with a variety of constrained deformation examples. Copyright © 2006 by the Association for Computing Machinery, Inc.
Persistent Identifierhttp://hdl.handle.net/10722/141802
ISSN
2021 Impact Factor: 7.403
2020 SCImago Journal Rankings: 2.153
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorHuang, Jen_HK
dc.contributor.authorShi, Xen_HK
dc.contributor.authorLiu, Xen_HK
dc.contributor.authorZhou, Ken_HK
dc.contributor.authorWei, LYen_HK
dc.contributor.authorTeng, SHen_HK
dc.contributor.authorBao, Hen_HK
dc.contributor.authorGuo, Ben_HK
dc.contributor.authorShum, HYen_HK
dc.date.accessioned2011-09-27T03:02:14Z-
dc.date.available2011-09-27T03:02:14Z-
dc.date.issued2006en_HK
dc.identifier.citationACM SIGGRAPH 2006 (SIGGRAPH '06), Boston, MA., 30 July-3 August 2006. In ACM Transactions on Graphics, 2006, v. 25 n. 3, p. 1126-1134en_HK
dc.identifier.issn0730-0301en_HK
dc.identifier.urihttp://hdl.handle.net/10722/141802-
dc.description.abstractIn this paper we present a general framework for performing constrained mesh deformation tasks with gradient domain techniques. We present a gradient domain technique that works well with a wide variety of linear and nonlinear constraints. The constraints we introduce include the nonlinear volume constraint for volume preservation, the nonlinear skeleton constraint for maintaining the rigidity of limb segments of articulated figures, and the projection constraint for easy manipulation of the mesh without having to frequently switch between multiple viewpoints. To handle nonlinear constraints, we cast mesh deformation as a nonlinear energy minimization problem and solve the problem using an iterative algorithm. The main challenges in solving this nonlinear problem are the slow convergence and numerical instability of the iterative solver. To address these issues, we develop a subspace technique that builds a coarse control mesh around the original mesh and projects the deformation energy and constraints onto the control mesh vertices using the mean value interpolation. The energy minimization is then carried out in the subspace formed by the control mesh vertices. Running in this subspace, our energy minimization solver is both fast and stable and it provides interactive responses. We demonstrate our deformation constraints and subspace deformation technique with a variety of constrained deformation examples. Copyright © 2006 by the Association for Computing Machinery, Inc.en_HK
dc.languageengen_US
dc.publisherAssociation for Computing Machinery, Inc..en_US
dc.relation.ispartofACM Transactions on Graphicsen_HK
dc.subjectNonlinear constraintsen_HK
dc.subjectProjection constrainten_HK
dc.subjectSkeletal controlen_HK
dc.subjectVolume preservationen_HK
dc.titleSubspace gradient domain mesh deformationen_HK
dc.typeConference_Paperen_HK
dc.identifier.emailWei, LY:lywei@cs.hku.hken_HK
dc.identifier.authorityWei, LY=rp01528en_HK
dc.description.naturelink_to_subscribed_fulltexten_US
dc.identifier.doi10.1145/1141911.1142003en_HK
dc.identifier.scopuseid_2-s2.0-34250784372en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-33748557383&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume25en_HK
dc.identifier.issue3en_HK
dc.identifier.spage1126en_HK
dc.identifier.epage1134en_HK
dc.identifier.isiWOS:000239817400076-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridHuang, J=8419094500en_HK
dc.identifier.scopusauthoridShi, X=7402953553en_HK
dc.identifier.scopusauthoridLiu, X=7409289799en_HK
dc.identifier.scopusauthoridZhou, K=7202915241en_HK
dc.identifier.scopusauthoridWei, LY=14523963300en_HK
dc.identifier.scopusauthoridTeng, SH=7102993292en_HK
dc.identifier.scopusauthoridBao, H=7102201533en_HK
dc.identifier.scopusauthoridGuo, B=7403276409en_HK
dc.identifier.scopusauthoridShum, HY=7006094115en_HK
dc.customcontrol.immutablesml 160108 - merged-
dc.identifier.issnl0730-0301-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats