File Download
  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Magnetic field modulated exciton generation in organic semiconductors: An intermolecular quantum correlated effect

TitleMagnetic field modulated exciton generation in organic semiconductors: An intermolecular quantum correlated effect
Authors
Issue Date2010
PublisherAmerican Physical Society. The Journal's web site is located at http://prb.aps.org/
Citation
Physical Review B (Condensed Matter and Materials Physics), 2010, v. 82 n. 20, article no. 205209 , p. 1-6 How to Cite?
AbstractMagnetoelectroluminescence (MEL) of organic semiconductor has been experimentally tuned by adopting blended emitting layer consisting of hole transporting material and electron transporting material. Theory based on Hubbard model fits experimental MEL well, which reveals two findings: (1) spin scattering and spin mixing, respectively, dominate MEL in low-field and high-field region. (2) Blended ratio, and thus the mobility, determines the value of the relative change in the EL in a given magnetic field. Finally successful prediction about the increase in singlet excitons in low field with little change in triplet exciton population further confirms the first finding. © 2010 The American Physical Society.
Persistent Identifierhttp://hdl.handle.net/10722/135130
ISSN
2014 Impact Factor: 3.736
ISI Accession Number ID
Funding AgencyGrant Number
National Natural Science Foundation of China
Shanghai Science and Technology Commission08JC1402300
MST of China2009CB929200
Research Grants Council of the HK Special Administrative Region, ChinaHKU712108
UGC of the University of Hong Kong400897
Hong Kong Research Grants CouncilHKU712108
ECNMP3-CT-2006-033370
Funding Information:

This work is supported by the National Natural Science Foundation of China and Shanghai Science and Technology Commission (Grant No. 08JC1402300) and the MST of China (Grant No. 2009CB929200). B. F. D. acknowledges HKU and the support of the Grant No. HKU712108 from the Research Grants Council of the HK Special Administrative Region, China. W. C. H. C. thanks UGC (Grant No. 400897) of the University of Hong Kong and Hong Kong Research Grants Council (Grant No. HKU712108). Y.Y. and C. Q. W. are also supported by the EC Project of OFSPIN (Grant No. NMP3-CT-2006-033370). We would like to thank Edward Obbard for his assistance in proofreading the manuscript.

References

 

DC FieldValueLanguage
dc.contributor.authorDing, Ben_HK
dc.contributor.authorYao, Yen_HK
dc.contributor.authorSun, Xen_HK
dc.contributor.authorGao, Xen_HK
dc.contributor.authorXie, Zen_HK
dc.contributor.authorSun, Zen_HK
dc.contributor.authorWang, Zen_HK
dc.contributor.authorDing, Xen_HK
dc.contributor.authorWu, Yen_HK
dc.contributor.authorJin, Xen_HK
dc.contributor.authorChoy, WCHen_HK
dc.contributor.authorWu, CQen_HK
dc.contributor.authorHou, Xen_HK
dc.date.accessioned2011-07-27T01:28:37Z-
dc.date.available2011-07-27T01:28:37Z-
dc.date.issued2010en_HK
dc.identifier.citationPhysical Review B (Condensed Matter and Materials Physics), 2010, v. 82 n. 20, article no. 205209 , p. 1-6-
dc.identifier.issn1098-0121en_HK
dc.identifier.urihttp://hdl.handle.net/10722/135130-
dc.description.abstractMagnetoelectroluminescence (MEL) of organic semiconductor has been experimentally tuned by adopting blended emitting layer consisting of hole transporting material and electron transporting material. Theory based on Hubbard model fits experimental MEL well, which reveals two findings: (1) spin scattering and spin mixing, respectively, dominate MEL in low-field and high-field region. (2) Blended ratio, and thus the mobility, determines the value of the relative change in the EL in a given magnetic field. Finally successful prediction about the increase in singlet excitons in low field with little change in triplet exciton population further confirms the first finding. © 2010 The American Physical Society.en_HK
dc.languageengen_US
dc.publisherAmerican Physical Society. The Journal's web site is located at http://prb.aps.org/en_HK
dc.relation.ispartofPhysical Review B (Condensed Matter and Materials Physics)-
dc.rightsCopyright 2010 by The American Physical Society. This article is available online at https://doi.org/10.1103/PhysRevB.82.205209-
dc.titleMagnetic field modulated exciton generation in organic semiconductors: An intermolecular quantum correlated effecten_HK
dc.typeArticleen_HK
dc.identifier.emailChoy, WCH:chchoy@eee.hku.hken_HK
dc.identifier.authorityChoy, WCH=rp00218en_HK
dc.description.naturepublished_or_final_version-
dc.identifier.doi10.1103/PhysRevB.82.205209en_HK
dc.identifier.scopuseid_2-s2.0-78649732781en_HK
dc.identifier.hkuros188410en_US
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-78649732781&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume82en_HK
dc.identifier.issue20en_HK
dc.identifier.spagearticle no. 205209, p. 1-
dc.identifier.epagearticle no. 205209, p. 6-
dc.identifier.isiWOS:000284306400009-
dc.publisher.placeUnited Statesen_HK
dc.identifier.scopusauthoridDing, B=16309026400en_HK
dc.identifier.scopusauthoridYao, Y=8918961600en_HK
dc.identifier.scopusauthoridSun, X=36659687300en_HK
dc.identifier.scopusauthoridGao, X=35083373600en_HK
dc.identifier.scopusauthoridXie, Z=15754808400en_HK
dc.identifier.scopusauthoridSun, Z=36659783000en_HK
dc.identifier.scopusauthoridWang, Z=36660103700en_HK
dc.identifier.scopusauthoridDing, X=7401929191en_HK
dc.identifier.scopusauthoridWu, Y=7406893141en_HK
dc.identifier.scopusauthoridJin, X=36820384000en_HK
dc.identifier.scopusauthoridChoy, WCH=7006202371en_HK
dc.identifier.scopusauthoridWu, CQ=8601010500en_HK
dc.identifier.scopusauthoridHou, X=13405684400en_HK
dc.identifier.issnl1098-0121-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats