File Download

There are no files associated with this item.

  Links for fulltext
     (May Require Subscription)
Supplementary

Article: Modelling steady state deformation of fee metals by non-equilibrium thermodynamics

TitleModelling steady state deformation of fee metals by non-equilibrium thermodynamics
Authors
KeywordsDislocation density
Saturation stress
Steady state deformation
Thermodynamics
Issue Date2007
PublisherManey Publishing. The Journal's web site is located at http://www.maney.co.uk/search?fwaction=show&fwid=185
Citation
Materials Science And Technology, 2007, v. 23 n. 9, p. 1105-1108 How to Cite?
AbstractThe steady state of plastic deformation is modelled by non-equilibrium thermodynamics theory. Based on energy conservation and constant entropy requirements at the steady state, the saturation dislocation density p is found to be determined by ρ=λε̇/(bvc), where λ is a constant that depends on the material properties, ε̇ is the strain rate, b is the magnitude of Burgers vector and vc is the dislocation climb velocity along the dislocation line. Then, by employing the Taylor relation, the saturation flow stress is obtained. The model is applied to four pure fee single crystals under tensile testing and polycrystalline Al at steady state creep. The predictions are in good agreement with the experimental observations. © 2007 Institute of Materials, Minerals and Mining.
Persistent Identifierhttp://hdl.handle.net/10722/92875
ISSN
2015 Impact Factor: 1.008
2015 SCImago Journal Rankings: 0.668
ISI Accession Number ID
References

 

DC FieldValueLanguage
dc.contributor.authorHuang, Men_HK
dc.contributor.authorDel Castillo, PEJRDen_HK
dc.contributor.authorVan Der Zwaag, Sen_HK
dc.date.accessioned2010-09-22T05:02:20Z-
dc.date.available2010-09-22T05:02:20Z-
dc.date.issued2007en_HK
dc.identifier.citationMaterials Science And Technology, 2007, v. 23 n. 9, p. 1105-1108en_HK
dc.identifier.issn0267-0836en_HK
dc.identifier.urihttp://hdl.handle.net/10722/92875-
dc.description.abstractThe steady state of plastic deformation is modelled by non-equilibrium thermodynamics theory. Based on energy conservation and constant entropy requirements at the steady state, the saturation dislocation density p is found to be determined by ρ=λε̇/(bvc), where λ is a constant that depends on the material properties, ε̇ is the strain rate, b is the magnitude of Burgers vector and vc is the dislocation climb velocity along the dislocation line. Then, by employing the Taylor relation, the saturation flow stress is obtained. The model is applied to four pure fee single crystals under tensile testing and polycrystalline Al at steady state creep. The predictions are in good agreement with the experimental observations. © 2007 Institute of Materials, Minerals and Mining.en_HK
dc.languageengen_HK
dc.publisherManey Publishing. The Journal's web site is located at http://www.maney.co.uk/search?fwaction=show&fwid=185en_HK
dc.relation.ispartofMaterials Science and Technologyen_HK
dc.subjectDislocation densityen_HK
dc.subjectSaturation stressen_HK
dc.subjectSteady state deformationen_HK
dc.subjectThermodynamicsen_HK
dc.titleModelling steady state deformation of fee metals by non-equilibrium thermodynamicsen_HK
dc.typeArticleen_HK
dc.identifier.emailHuang, M:mxhuang@hku.hken_HK
dc.identifier.authorityHuang, M=rp01418en_HK
dc.description.naturelink_to_subscribed_fulltext-
dc.identifier.doi10.1179/174328407X226527en_HK
dc.identifier.scopuseid_2-s2.0-35148851880en_HK
dc.relation.referenceshttp://www.scopus.com/mlt/select.url?eid=2-s2.0-35148851880&selection=ref&src=s&origin=recordpageen_HK
dc.identifier.volume23en_HK
dc.identifier.issue9en_HK
dc.identifier.spage1105en_HK
dc.identifier.epage1108en_HK
dc.identifier.isiWOS:000250345700012-
dc.publisher.placeUnited Kingdomen_HK
dc.identifier.scopusauthoridHuang, M=23469788700en_HK
dc.identifier.scopusauthoridDel Castillo, PEJRD=6603017212en_HK
dc.identifier.scopusauthoridVan Der Zwaag, S=7006817556en_HK
dc.identifier.citeulike1743104-

Export via OAI-PMH Interface in XML Formats


OR


Export to Other Non-XML Formats