File Download
Links for fulltext
(May Require Subscription)
- Publisher Website: 10.1186/1471-2407-9-389
- Scopus: eid_2-s2.0-71549154370
- PMID: 19886989
- WOS: WOS:000272337500001
- Find via
Supplementary
- Citations:
- Appears in Collections:
Article: Predicting prognosis in hepatocellular carcinoma after curative surgery with common clinicopathologic parameters
Title | Predicting prognosis in hepatocellular carcinoma after curative surgery with common clinicopathologic parameters | ||||
---|---|---|---|---|---|
Authors | |||||
Issue Date | 2009 | ||||
Publisher | BioMed Central Ltd. The Journal's web site is located at http://www.biomedcentral.com/bmccancer/ | ||||
Citation | Bmc Cancer, 2009, v. 9 How to Cite? | ||||
Abstract | Background: Surgical resection is one important curative treatment for hepatocellular carcinoma (HCC), but the prognosis following surgery differs substantially and such large variation is mainly unexplained. A review of the literature yields a number of clinicopathologic parameters associated with HCC prognosis. However, the results are not consistent due to lack of systemic approach to establish a prediction model incorporating all these parameters. Methods: We conducted a retrospective analysis on the common clinicopathologic parameters from a cohort of 572 ethnic Chinese HCC patients who received curative surgery. The cases were randomly divided into training (n = 272) and validation (n = 300) sets. Each parameter was individually tested and the significant parameters were entered into a linear classifier for model building, and the prediction accuracy was assessed in the validation set. Results: Our findings based on the training set data reveal 6 common clinicopathologic parameters (tumor size, number of tumor nodules, tumor stage, venous infiltration status, and serum α-fetoprotein and total albumin levels) that were significantly associated with the overall HCC survival and disease-free survival (time to recurrence). We next built a linear classifier model by multivariate Cox regression to predict prognostic outcomes of HCC patients after curative surgery This analysis detected a considerable fraction of variance in HCC prognosis and the area under the ROC curve was about 70%. We further evaluated the model using two other protocols; leave-one-out procedure (n = 264) and independent validation (n = 300). Both were found to have excellent prediction power. The predicted score could separate patients into distinct groups with respect to survival (p-value = 1.8e-12) and disease free survival (p-value = 3.2e-7). Conclusion: This described model will provide valuable guidance on prognosis after curative surgery for HCC in clinical practice. The adaptive nature allows easy accommodation for future new biomarker inputs, and it may serve as the foundation for future modeling and prediction for HCC prognosis after surgical treatment. © 2009 Hao et al; licensee BioMed Central Ltd. | ||||
Persistent Identifier | http://hdl.handle.net/10722/88627 | ||||
ISSN | 2023 Impact Factor: 3.4 2023 SCImago Journal Rankings: 1.087 | ||||
PubMed Central ID | |||||
ISI Accession Number ID |
Funding Information: The work was supported by Research Grants Council of Hong Kong and Innovation and Technology Fund of the Hong Kong Government to J. M. L. We would like to thank for the technical supports from Ashley Wong and Kit-Yuk Mak of the Queen Mary Hospital. IOL Ng is a Loke Yew Professor in Pathology. | ||||
References |
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hao, K | en_HK |
dc.contributor.author | Luk, JM | en_HK |
dc.contributor.author | Lee, NPY | en_HK |
dc.contributor.author | Mao, M | en_HK |
dc.contributor.author | Zhang, C | en_HK |
dc.contributor.author | Ferguson, MD | en_HK |
dc.contributor.author | Lamb, J | en_HK |
dc.contributor.author | Dai, H | en_HK |
dc.contributor.author | Ng, IO | en_HK |
dc.contributor.author | Sham, PC | en_HK |
dc.contributor.author | Poon, RTP | en_HK |
dc.date.accessioned | 2010-09-06T09:45:52Z | - |
dc.date.available | 2010-09-06T09:45:52Z | - |
dc.date.issued | 2009 | en_HK |
dc.identifier.citation | Bmc Cancer, 2009, v. 9 | en_HK |
dc.identifier.issn | 1471-2407 | en_HK |
dc.identifier.uri | http://hdl.handle.net/10722/88627 | - |
dc.description.abstract | Background: Surgical resection is one important curative treatment for hepatocellular carcinoma (HCC), but the prognosis following surgery differs substantially and such large variation is mainly unexplained. A review of the literature yields a number of clinicopathologic parameters associated with HCC prognosis. However, the results are not consistent due to lack of systemic approach to establish a prediction model incorporating all these parameters. Methods: We conducted a retrospective analysis on the common clinicopathologic parameters from a cohort of 572 ethnic Chinese HCC patients who received curative surgery. The cases were randomly divided into training (n = 272) and validation (n = 300) sets. Each parameter was individually tested and the significant parameters were entered into a linear classifier for model building, and the prediction accuracy was assessed in the validation set. Results: Our findings based on the training set data reveal 6 common clinicopathologic parameters (tumor size, number of tumor nodules, tumor stage, venous infiltration status, and serum α-fetoprotein and total albumin levels) that were significantly associated with the overall HCC survival and disease-free survival (time to recurrence). We next built a linear classifier model by multivariate Cox regression to predict prognostic outcomes of HCC patients after curative surgery This analysis detected a considerable fraction of variance in HCC prognosis and the area under the ROC curve was about 70%. We further evaluated the model using two other protocols; leave-one-out procedure (n = 264) and independent validation (n = 300). Both were found to have excellent prediction power. The predicted score could separate patients into distinct groups with respect to survival (p-value = 1.8e-12) and disease free survival (p-value = 3.2e-7). Conclusion: This described model will provide valuable guidance on prognosis after curative surgery for HCC in clinical practice. The adaptive nature allows easy accommodation for future new biomarker inputs, and it may serve as the foundation for future modeling and prediction for HCC prognosis after surgical treatment. © 2009 Hao et al; licensee BioMed Central Ltd. | en_HK |
dc.language | eng | en_HK |
dc.publisher | BioMed Central Ltd. The Journal's web site is located at http://www.biomedcentral.com/bmccancer/ | en_HK |
dc.relation.ispartof | BMC Cancer | en_HK |
dc.rights | This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License. | - |
dc.subject.mesh | Area Under Curve | - |
dc.subject.mesh | Carcinoma, Hepatocellular - mortality - pathology - surgery | - |
dc.subject.mesh | Disease-Free Survival | - |
dc.subject.mesh | Humans | - |
dc.subject.mesh | Liver Neoplasms - mortality - pathology - surgery | - |
dc.title | Predicting prognosis in hepatocellular carcinoma after curative surgery with common clinicopathologic parameters | en_HK |
dc.type | Article | en_HK |
dc.identifier.openurl | http://library.hku.hk:4550/resserv?sid=HKU:IR&issn=1471-2407&volume=9 article no. 389&spage=&epage=&date=2009&atitle=Predicting+prognosis+in+hepatocellular+carcinoma+after+curative+surgery+with+common+clinicopathologic+parameters | en_HK |
dc.identifier.email | Luk, JM: jmluk@hkucc.hku.hk | en_HK |
dc.identifier.email | Lee, NPY: nikkilee@hku.hk | en_HK |
dc.identifier.email | Ng, IO: iolng@hku.hk | en_HK |
dc.identifier.email | Sham, PC: pcsham@hku.hk | en_HK |
dc.identifier.email | Poon, RTP: poontp@hku.hk | en_HK |
dc.identifier.authority | Luk, JM=rp00349 | en_HK |
dc.identifier.authority | Lee, NPY=rp00263 | en_HK |
dc.identifier.authority | Ng, IO=rp00335 | en_HK |
dc.identifier.authority | Sham, PC=rp00459 | en_HK |
dc.identifier.authority | Poon, RTP=rp00446 | en_HK |
dc.description.nature | published_or_final_version | - |
dc.identifier.doi | 10.1186/1471-2407-9-389 | en_HK |
dc.identifier.pmid | 19886989 | - |
dc.identifier.pmcid | PMC2785835 | - |
dc.identifier.scopus | eid_2-s2.0-71549154370 | en_HK |
dc.identifier.hkuros | 168602 | en_HK |
dc.relation.references | http://www.scopus.com/mlt/select.url?eid=2-s2.0-71549154370&selection=ref&src=s&origin=recordpage | en_HK |
dc.identifier.volume | 9 | en_HK |
dc.identifier.isi | WOS:000272337500001 | - |
dc.publisher.place | United Kingdom | en_HK |
dc.identifier.scopusauthorid | Hao, K=34770116300 | en_HK |
dc.identifier.scopusauthorid | Luk, JM=7006777791 | en_HK |
dc.identifier.scopusauthorid | Lee, NPY=7402722690 | en_HK |
dc.identifier.scopusauthorid | Mao, M=7102960472 | en_HK |
dc.identifier.scopusauthorid | Zhang, C=7405492903 | en_HK |
dc.identifier.scopusauthorid | Ferguson, MD=35208305500 | en_HK |
dc.identifier.scopusauthorid | Lamb, J=7201524642 | en_HK |
dc.identifier.scopusauthorid | Dai, H=7402206916 | en_HK |
dc.identifier.scopusauthorid | Ng, IO=7102753722 | en_HK |
dc.identifier.scopusauthorid | Sham, PC=34573429300 | en_HK |
dc.identifier.scopusauthorid | Poon, RTP=7103097223 | en_HK |
dc.identifier.citeulike | 6075470 | - |
dc.identifier.issnl | 1471-2407 | - |